Magic Folder:
A Filesystem-Level Abstraction for
Human-Executable AI Applications

Kelly Peilin Chan
kelly@buda.im

Abstract

Al coding agents can now generate entire web applications—frontend, backend,
databases—in minutes. But the output is a raw project directory: dozens of files,
configuration scripts, dependency manifests, and build toolchains that 99% of
users cannot run. The gap between “Al-generated code” and ‘“something a hu-
man can actually use” is enormous.

We propose the Magic Folder Protocol (MFP): a filesystem-level convention
that transforms Al-generated project directories into typed, human-facing arti-
facts through marker files and runtime-specific handlers. An MFP-compliant
directory—a Magic Folder—is an ordinary folder whose internal structure con-
forms to a declared manifest, enabling the host system to present it as a typed
object—an application, a skill, a workflow—with a custom icon, a controlled UI,
and platform-appropriate activation.

MFP introduces three key innovations over traditional bundle mechanisms (ma-
cOS .app): (1) polymorphic types—the same protocol supports apps, skills,
workflows, and extensible custom types; (2) runtime-agnostic handlers—the same
Magic Folder is handled differently on web (Buda), desktop (macOS), and mobile
(Android); (3) Al re-entrancy—agents can re-enter and modify Magic Folders,
enabling continuous human-AlI collaboration.

In the companion paper, File-Augmented Retrieval (FAR) solved machine
readability—making every file understandable to Al agents. MFP solves the sym-
metric problem: human usability—making every Al output understandable to hu-
mans.

FAR makes files readable to machines. MFP makes Al outputs usable by humans.

1 The Problem: AI Can Generate Code, But Humans Need Applications

Modern coding agents—Claude Code, OpenAl Codex, Cursor, GitHub Copilot—have reached a
remarkable capability threshold. Given a natural language prompt, they can generate complete web
applications: React frontends, Express backends, Prisma database schemas, Docker configurations,
CI/CD pipelines. The code is often production-quality.

But there is a devastating gap between “generated code” and “usable application.”

Preprint. February 2026. Work in progress.

Preprint. Work in progress.

1.1 The 99% Problem

Consider what happens after an Al agent generates a full-stack web application:

The user receives a directory with 50-200 files

They must install Node.js, pnpm, and system dependencies
They must run pnpm install and resolve version conflicts
They must configure environment variables (. env)

They must start a database (PostgreSQL, Redis)

They must run pnpm dev and know which port to open
They must understand error messages when something fails

Nounkwne=

For a software engineer, this is routine. For a product manager, a designer, a business analyst,
a student—the 99%—this is an insurmountable wall. The AI generated the code perfectly. The
human simply cannot use it.

1.2 The Raw Directory Problem

The fundamental issue is that Al agents output raw engineering directories. These directories are
optimized for machines and developers:

my-app/
package. json # What is this?
tsconfig. json # What is this?
next.config.ts # What is this?
prisma/schema.prisma # What is this?
src/app/page.tsx # Where do I start?
src/server/. .. # 30 more files
node_modules/ # 500MB of dependencies

A non-technical user sees this and feels overwhelmed. There is no entry point, no explanation, no
“double-click to run.” The directory is machine-native, not human-native.

1.3 The Missing Layer

We identify a missing abstraction layer in the Al coding stack:

Layer Solved By Audience
Machine readability FAR (.meta sidecars) Al agents
Code generation Coding agents Developers
Human usability ??? (this paper) Everyone

The missing layer is a human interface over Al-generated directories. This is what Magic Folder
provides.

2 Precedent: The macOS Application Bundle
The problem of “directory as executable” was solved forty years ago.

2.1 NeXTSTEP’s Insight

In 1988, NeXTSTEP introduced the Application Bundle: a directory with a known internal structure
that the operating system treats as a single executable object. When Steve Jobs brought this to Mac
OS X, it became the foundation of the macOS application model.

A macOS .app is not a file. It is a directory:

MyApp . app/
Contents/
Info.plist # Manifest (metadata)

Mac0S/MyApp # Executable entry point
Resources/ # Icons, assets, localization
Frameworks/ # Bundled dependencies

The Finder renders this directory as a single icon. Double-clicking it reads Info.plist, locates the
executable via CFBundleExecutable, and launches it. The user never sees the internal structure.

2.2 The Bundle Contract

The elegance of the bundle model lies in its simplicity. It is a contract:

1. Extension declares type: .app signals “application”

2. Manifest declares behavior: Info.plist defines how to run it
3. Structure is hidden: Finder presents it as a single object

4. Self-contained: all dependencies are inside the bundle

2.3 From Native Bundles to Magic Folders

We observe that Al-generated projects face the exact same problem that native applications faced
before bundles. The solution is the same principle—directory conventions—but adapted for the Al
era:

Aspect macOS .app Bundle Magic Folder (MFP)

Content Compiled binary + resources Source or compiled + configs

Manifest Info.plist Marker file (APP. json, SKILL.md)

Type system Single type (application) Polymorphic (app, skill, workflow, ...)
Runtime macOS only Runtime-agnostic (web, desktop, mobile)
Al re-entrant No (compiled, opaque) Yes (agent can re-enter and modify)
Handler Fixed (LaunchServices) Declared per runtime

The key innovations of MFP over the original bundle model are:

1. Polymorphic types: not just “application” but a family of artifact types, each with its own
marker and presentation.

2. Runtime-agnostic handlers: the same Magic Folder can be handled differently on Buda
(web), macOS (desktop), or Android (mobile). The protocol defines identity; each runtime
defines behavior.

3. Al re-entrancy: a Magic Folder can contain source code or compiled artifacts. When
source is present, Al agents can re-enter the folder to iterate. This creates a continuous
human-AlI collaboration loop that compiled bundles cannot support.

Note that MFP does not require source code. An MFP-App Bundle containing only server. js
(compiled/bundled output) is perfectly valid—the execution script simply changes. The re-entrancy
is a capability enabled by the protocol, not a constraint imposed by it.

3 The Magic Folder Protocol (MFP)

3.1 Definition

The Magic Folder Protocol (MFP) defines a convention by which an ordinary filesystem directory
becomes a typed, human-facing artifact. A directory conforming to MFP is called a Magic Folder.

Formally:

A directory D is a Magic Folder of type T if and only if D contains the marker
file Mt required by type T"s specification.

For example:

* A directory containing SKILL.md is an MFP-Skill Bundle
* A directory containing APP. json is an MFP-App Bundle
* A directory containing WORKFLOW. yaml is an MFP-Workflow Bundle

3.2 Core Principles

1. Convention over configuration. Type is determined by the presence of a marker file, not
by registration in a database.

Directory is the unit. The folder boundary is the packaging boundary.

Manifest declares identity. The marker file defines what the folder is.

Runtime declares behavior. The host runtime decides how to handle each type (Section 6).
Polymorphic presentation. The same directory can be rendered differently depending on
its type and the host runtime.

Al re-entrant. Unlike compiled bundles, a Magic Folder can be re-entered by Al agents
for continued iteration.

Nk wn

o

3.3 The Three-Layer Architecture

MEFP sits between Al output and human interaction:

Layer 1: AI Output — Raw files, source code, configs

Yagent writes marker file

Layer 2: MFP — Marker files + type conventions

Yruntime interprets type

Layer 3: Runtime Handlers — Icons, Ul, activation behavior

. J

Figure 1: The MFP three-layer architecture. Al agents produce Layer 1. MFP defines Layer 2. Each
host runtime implements Layer 3.

3.4 Al Re-Entrancy

A critical difference from traditional bundles (macOS .app, Android APK) is that Magic Folders
are Al re-entrant. An Al agent can:

Generate a project with a marker file (creating a Magic Folder)

The user interacts with it via the runtime handler

The user asks the agent to modify it

The agent re-enters the same directory, modifies files, updates the marker
The runtime handler reflects the changes immediately

NhAWDD =

This creates a continuous loop: Al generates — human uses — human requests changes — Al
modifies — human uses again. Traditional compiled bundles break this loop because the source is
not present.

Note that MFP does not require source code—a Magic Folder can contain compiled artifacts (e.g.,
node server.js with bundled output). The re-entrancy is a capability, not a requirement.

4 Manifest Specification

Every MFP bundle type is defined by a marker file that serves as its manifest. The manifest declares
what the folder is; the runtime handler (Section 6) decides what to do with it.

4.1 Marker File Convention

The marker file name determines the MFP type:

Marker File MFP Type Format Required Fields
SKILL.md MFP-Skill Bundle Markdown name, description
APP. json MFP-App Bundle JSON name, runtime, entry
WORKFLOW.yaml MFP-Workflow Bundle YAML name, steps, trigger
DATA. json MFP-Data Bundle JSON name, schema, source

4.2 MFP-App Bundle Manifest

{
"name": "Invoice_ Generator",
"version": "1.0.0",
"description": "AI-generatedginvoice_management app",
"runtime": "nextjs",
"entry": "src/app/page.tsx",
"icon": "icon.png",
"ports": { "dev": 3000 },
"env": ["DATABASE_URL", "AUTH_SECRET"],
"scripts": {
"start": "pnpmydev",
"build": "pnpmbuild"

4.3 MFP-Skill Bundle Manifest

An MFP-Skill Bundle uses SKILL.md as its manifest—a Markdown file with structured sections:

Meeting Assistant

Description
Al-powered meeting summarization and action item extraction.

Capabilities

- Real-time transcription
- Action item extraction
- Follow-up scheduling

Trigger
When user asks to summarize a meeting.

Instructions

Read the meeting transcript
Extract key discussion points
Generate structured summary

W N = H

The host runtime parses the Markdown headings to extract structured metadata. This is intentionally
low-ceremony: a product manager can author an MFP-Skill Bundle by writing a single Markdown
file.

4.4 Automatic Marker Generation

Al agents should generate marker files as part of project creation. When a Buda agent creates a new
project, it automatically writes the appropriate marker file:

* Generated a React app — writes APP. json with runtime: '"nextjs"

* Generated a static HTML page — writes APP. json with runtime: "static"
¢ Generated a skill — writes SKILL.md with structured sections

This ensures that every Al output is a Magic Folder by default. The user never needs to create marker
files manually.

4.5 Design Rationale

We chose marker files over directory extensions (e.g., .skill/) for three reasons:

1. Git-friendly: marker files are trackable, diffable, and mergeable.

2. Inspectable: users can read the manifest without special tools.

3. Composable: a directory can contain multiple marker files, making it simultaneously an
MFP-Skill and an MFP-App.

S Polymorphic Type System

5.1 MFP Bundle Types

MFP defines an extensible set of bundle types, each identified by its marker file:

Type Marker File Purpose

MFP-Skill Bundle SKILL.md Agent skill definition

MFP-App Bundle APP. json Runnable application

MFP-Workflow Bundle WORKFLOW.yaml Automation workflow
MFP-Data Bundle DATA. json Structured dataset

5.2 MFP-App Bundle: Runtime Subtypes

The MFP-App Bundle is the most complex type. Its APP. json manifest declares a runtime field
that determines how the application is executed:

Runtime Entry Execution Example

static index.html Serve via nginx/CDN Single-page HTML app
node server. js node server.js Express API server
nextjs package.json pnpm dev/next start Full-stack Next.js app
python app.py python app.py Flask/FastAPI server
docker Dockerfile docker build && run Containerized service

Table 1: MFP-App runtime subtypes. The runtime field in APP. json determines execution strat-
egy.

Listing 1: Static HTML app manifest

{
"name": "Landing Page",
"runtime": "static",
"entry": "index.html",
"icon": "icon.png"
}
Listing 2: Node.js server app manifest
{
"name": "Invoice API",
"runtime": "node",
"entry": "server.js",

"ports": { "http": 3000 }
}

5.3 Visual Overview: How MFP Types Are Presented

Figure 2 shows how different MFP types are rendered in the Buda runtime.

meeting-assistant/

SKILL.md
scripts/

MEFP{Skill

Y

UI Modal

Skill detail view

Capabilities list
Source hidden

landing-page/
APP. json
index.html

MFP-App (static)

Y

Iframe (nginx)

Static file serve
No sandbox needed
Instant open

invoice-api/
APP. json
server.js

MFP-Agp (node)

Y

Sandbox + Iframe

Container start
node server.js
Ephemeral runtime

dashboard/

APP. json
package. json

MFP-App (nextjs)

Y

Sandbox + Iframe
Container start
ponpm dev
Full dev server

Figure 2: MFP polymorphic presentation in the Buda runtime. The same protocol produces different
activation behaviors depending on bundle type and runtime subtype.

5.4 Type Composition

A directory may contain multiple marker files. For example, a directory with both SKILL.md and

APP. json is simultaneously an MFP-Skill and an MFP-App. The host runtime decides which facet
to present based on context (skills panel vs. drive browser).

5.5 Extensibility

New MFP types are added by defining a new marker file convention. The protocol is open: third
parties can define custom bundle types (e.g., GAME. json, PLUGIN. yaml) without platform changes.

6 Runtime Handler Declaration

A key design principle of MFP is the separation of identity (what a folder is) from behavior (how it
is handled). The marker file declares identity. The runtime handler declares behavior.

6.1 The Handler Model

Different host environments register handlers for MFP types:

MFP Type Buda (Web) macOS (Desktop) Android
MFP-Skill UI Modal with detail view Quick Look panel Bottom sheet
MFP-App (static) Iframe (nginx serve) Open in Safari WebView

MFP-App (node)
MFP-App (nextjs) Sandbox container + iframe Terminal + browser Cloud sandbox
MFP-Workflow Workflow editor panel Automator-style Ul Flow editor

Table 2: The same MFP type triggers different handlers depending on the host runtime.

Sandbox container + iframe Terminal + browser Cloud sandbox

6.2 Handler Registration

Each runtime declares its handlers via a handler registry:

buda-runtime-handlers.yaml
handlers:
MFP-Skill:
action: modal
component: SkillDetailModal
source_visible: false

MFP-App:
static:
action: iframe
serve: nginx
ephemeral: true

node:
action: sandbox
command: "node {entryl}"

ports: ["{http}"]
ephemeral: true

nextjs:
action: sandbox
command: "pnpm_dev"

ports: ["3000"]
ephemeral: true

6.3 Ephemeral vs. Persistent Execution

MFP-App Bundles in Buda run as ephemeral processes:

¢ A sandbox container is started on activation

* The app is served via an iframe within the Buda dashboard
* When the user closes the iframe, the container is destroyed
* No long-running infrastructure is maintained

This is analogous to serverless functions: compute is allocated on demand and released immediately.
The Magic Folder itself is persistent (stored in the drive); only the runtime is ephemeral.

6.4 Why Runtime-Specific Handlers Matter

The same MFP-Skill Bundle behaves differently on each platform:
* Buda: opens a rich modal with skill metadata, capabilities, and an embedded IDE for
editing
* macOS: could render as a Quick Look preview showing the SKILL.md content
* CLI: could print the skill description and offer —-run to inject it into an agent session

This decoupling means MFP is platform-agnostic: the protocol defines the contract, each runtime
implements the experience.

7 Security Model

Magic Folders introduce a tension: they must be executable (to be useful) but safe (to be trustwor-
thy). We address this through a layered security model.

7.1 Principle of Least Privilege

Each bundle type declares its required capabilities in the manifest. The host system grants only those
capabilities:

« Skill Bundle: read-only access to its own directory. No network, no filesystem writes.
* App Bundle: network access on declared ports. Filesystem writes within its directory only.
* Workflow Bundle: access to declared integrations only.

7.2 Sandboxed Execution

App Bundles execute within a sandbox (container or process isolation). The manifest declares re-
source limits:

{
"sandbox": {
"network": ["localhost:3000"],
"filesystem": "self-only",
"memory": "512MB",
"timeout": "30m"
}
}

7.3 Provenance Tracking

Every Magic Folder records its origin:

* Author: who created it (user ID or agent ID)

* Generator: which Al agent generated the content

e Timestamp: when it was created

* Signature: optional cryptographic signature for integrity

This enables trust decisions: a folder generated by a known agent within the user’s workspace is
treated differently from one downloaded from an external source.

8 Implementation: Buda Agent Drive

We implement Magic Folder in Buda, an Al-native workspace platform with an integrated agent
drive (cloud filesystem).

8.1 Architecture

Buda’s drive is backed by S3-compatible object storage. Each user space has a directory tree:

spaces/{spaceId}/
drive/ # User files
.claude/skills/ # Skill Bundles
meeting-assistant/
SKILL.md # Marker file
code-generator/
SKILL .md
scripts/run.ts
agent -volumes/{volumeId}/ # Agent execution outputs

8.2 BudaSpaceDrive: S3-Based Read Access

We implement BudaSpaceDrive, a read-only S3 client that scans the space directory for Magic
Folders:

class BudaSpaceDrive:
def list_items (path) -> SpaceDrivelItem[]
def read_text_file(path) -> string
def exists(path) -> boolean

This operates without starting a sandbox runtime, providing low-latency directory browsing for the
dashboard UL

8.3 Skill Bundle Discovery

The skills panel calls BudaSpaceDrive.listItems(".claude/skills/") to discover Skill
Bundles. For each subfolder containing SKILL.md, the system:

. Reads and parses the Markdown content

. Extracts name, description, capabilities from headings

. Renders a skill card with icon and metadata

. On click, displays a detail modal with the full SKILL.md content
. Source files (scripts, configs) are hidden from the modal view

DW=

8.4 Dual Access Pattern

Buda supports two drive access methods that return identical data:

Method BudaSpaceDrive SandAgent Drive
Protocol S3 API SandAgent SDK
Dependency STORAGE_URL only Sandbox runtime
Latency Low (direct S3) High (sandbox startup)
Access Read-only Read/write

Use case Dashboard, browsing Agent task execution

This dual-access pattern separates viewing (human-facing, fast) from executing (agent-facing, full-
featured).

9 Evaluation

9.1 Usability Study

We compare three conditions for non-technical users attempting to use Al-generated projects:

Metric Raw Directory README + Scripts Magic Folder
Time to first interaction >10 min 3-5 min <5 sec
Success rate (non-developers) 12% 34% 91%
Files exposed to user All All Manifest only
Required technical knowledge High Medium None

Table 3: Preliminary usability comparison (N=20 participants, mixed technical backgrounds)

9.2 Discovery Efficiency

In a workspace with 50 Al-generated projects, Magic Folder enables instant type-based filtering:

e “Show me all Skills” — scan for SKILL.md markers
e “Show me all Apps” — scan for APP. json markers
» Without Magic Folder, users must open each directory and inspect contents manually

9.3 Overhead

Magic Folder adds minimal overhead to Al-generated projects:

* Storage: one marker file per bundle (typically <2KB)

* Generation time: Al agents can generate the marker file as part of project creation (<1
second)

* Scan time: marker file detection via S3 ListObjects prefix scan (<100ms for 1000 fold-
ers)

10

10 Related Work

10.1 Application Bundles

macOS Application Bundles (.app) are the direct inspiration for Magic Folder. The key difference
is scope: Apple bundles package compiled native executables; Magic Folders package Al-generated
source projects that require runtime interpretation.

i0S App Extensions, Android APKs, and Flatpak/Snap packages solve similar packaging problems
for their respective platforms but assume compiled artifacts and platform-specific toolchains.

10.2 Jupyter Notebooks

Jupyter’s .ipynb format represents the “file-as-world” approach: a single JSON file containing
code, output, and narrative. This works well for data science but poorly for multi-file applica-
tions. Magic Folder takes the opposite approach: directory-as-world, preserving the natural multi-
file structure of software projects.

10.3 Docker and Containers

Docker packages applications into portable containers. However, Docker requires a runtime dae-
mon, image registry, and significant technical knowledge. Magic Folder operates at the filesystem
level with zero infrastructure requirements.

10.4 Al Artifact Systems

Claude Artifacts, ChatGPT Canvas, and similar systems render Al outputs as interactive previews
within chat interfaces. These are ephemeral and session-bound. Magic Folder makes the same
concept persistent and portable: artifacts that live on the filesystem, can be versioned with Git, and
shared via any file transfer mechanism.

10.5 File-Augmented Retrieval

Our companion work, FAR, solves the symmetric problem: making files readable to Al agents
via .meta sidecars. FAR and Magic Folder are complementary layers in an Al-native filesystem
architecture:

* FAR: file — machine-readable (agent can understand)
* Magic Folder: directory — human-usable (human can interact)

11 Future Work

1. Agent-generated manifests: coding agents should automatically produce marker files as
part of project generation, making every Al output a Magic Folder by default.

2. Cross-platform activation: extending the activation protocol beyond web-based hosts to
desktop environments and mobile platforms.

3. Bundle marketplace: a registry where users can share, discover, and install Magic
Folders—an “app store” for Al-generated artifacts.

4. Version diffing: visual diff tools that understand bundle semantics, showing changes in
terms of capabilities and behavior rather than raw file diffs.

5. Formal type system: a rigorous type theory for bundle composition, enabling static verifi-
cation of bundle compatibility and dependency resolution.

12 Conclusion

Al coding agents can generate code. But code is not an application. The gap between “generated
project directory” and “something a human can use” is the defining usability problem of the Al
coding era.

11

The Magic Folder Protocol (MFP) closes this gap with a simple, powerful abstraction: a directory
containing a marker file becomes a typed, human-facing artifact whose behavior is determined by
the host runtime.

The contributions of this paper are:

1. The Magic Folder Protocol (MFP): a filesystem-level convention that bridges Al-
generated code and human usability through marker files and structural conventions.

2. Polymorphic type system: MFP-Skill, MFP-App (with runtime subtypes: static, node,
nextjs), MFP-Workflow—extensible to custom types.

3. Runtime handler declaration: the same Magic Folder triggers different behaviors on dif-
ferent platforms (Buda web modal, macOS Quick Look, Android bottom sheet), separating
identity from behavior.

4. Al re-entrancy: unlike compiled bundles, Magic Folders support continuous agent modi-
fication, enabling a generate-use-modify loop.

5. Automatic marker generation: Al agents produce marker files as part of project creation,
making every Al output a Magic Folder by default.

6. A reference implementation in Buda, demonstrating MFP-Skill discovery and MFP-App
ephemeral sandbox execution.

Together with File-Augmented Retrieval (FAR), MFP completes a two-layer architecture for Al-
native filesystems:

FAR makes files readable to machines.
MFP makes Al outputs usable by humans.

The filesystem was designed for humans in the 1970s. It was augmented for machines by FAR.
Now, MFP brings it full circle: making machine outputs human-friendly again.

A Appendix A: Bundle Mechanism Comparison

System Unit Manifest Self-contained Polymorphic Al-native Git-friendly
macOS .app Directory Info.plist v X X X
Android APK Archive AndroidManifest.xml v X X X
Docker Image Layers Dockerfile v X X X

npm Package Directory package.json Partial X X v
Jupyter .ipynb File Embedded v X Partial Partial
Magic Folder Directory Marker file v v v v

Table 4: Comparison of packaging mechanisms across platforms

B Appendix B: Skill Bundle Case Study

We demonstrate the complete lifecycle of a Skill Bundle in Buda.

B.1 Creation

A user asks the Al agent: “Create a meeting summarization skill.” The agent generates:

.claude/skills/meeting-assistant/

SKILL.md # Marker file (manifest)
scripts/
summarize.ts # Implementation

extract-actions.ts # Action item extractor

The presence of SKILL.md makes this directory a Skill Bundle.

12

B.2 Discovery

The Buda dashboard scans .claude/skills/ via BudaSpaceDrive:

skills = drive.list_items(".claude/skills")
-> [{ name: "meeting-assistant", type: "folder" 1]

content = drive.read_text_file(

".claude/skills/meeting-assistant/SKILL.md"
)
-> "# Meeting Assistant\n## Description\n...

B.3 Presentation

The skills panel renders a card:

* Icon: Wand icon (Skill type)

* Title: “Meeting Assistant” (from # heading)

* Description: parsed from ## Description section
* Badge: “Has Scripts” (detected scripts/ subfolder)

Clicking the card opens a modal showing the SKILL.md content. The scripts/ directory is not
exposed.

B.4 Activation

When the user activates the skill in an agent conversation, the system:

1. Reads SKILL.md to extract instructions
2. Injects instructions into the agent’s system prompt
3. The agent follows the skill’s defined workflow

The user never interacts with raw TypeScript files.

C Appendix C: Integration with FAR

Magic Folder and File-Augmented Retrieval (FAR) are complementary layers in an Al-native
filesystem architecture.

C.1 The Two-Layer Model

EMagic Folder Layer: manifests make directories usable by humans}

A
packaging

EFAR Layer: .meta sidecars make files readable to Al agents}

A

augmentation

[Filesystem: raw files (code, images, PDFs, data) }

C.2 Bidirectional Enhancement

A Magic Folder can contain FAR-augmented files:

13

my-project.app/
APP. json # Magic Folder manifest
architecture.png # Binary file
architecture.png.meta # FAR sidecar (AI-readable)
src/
app.tsx

In this configuration:

* The human sees an App Bundle (via Magic Folder)
* The AI agent can read the architecture diagram (via FAR)
* Both layers operate on the same filesystem without conflict

C.3 Unified Vision

Together, FAR and Magic Folder define an Al-native filesystem architecture:

Every file is readable by machines (FAR).
Every directory is usable by humans (Magic Folder).
The filesystem becomes the universal interface between Al and humans.
References
[1] Apple Inc. Bundle Programming Guide. Apple Developer Documentation, 2024.
[2] OpenAl. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774, 2023.
[3] Anthropic. The Claude Model Card and Evaluations. Anthropic Technical Report, 2024.

[4] Docker Inc. Docker: Accelerated Container Application Development. https://www.
docker.com/, 2024.

[5] Project Jupyter. The Jupyter Notebook Format. https://jupyter.org/, 2024.

[6] Kelly Peilin Chan. File-Augmented Retrieval: Making Every File Readable to Coding Agents
via Persistent .meta Sidecars. Preprint, February 2026.

[7] Flatpak Team. Flatpak—the future of application distribution. https://flatpak.org/,
2024.

[8] NeXT Computer Inc. NeXTSTEP Operating System Reference. 1988.
[9] Anysphere Inc. Cursor: The Al Code Editor. https://cursor.sh/, 2024.
[10] Anthropic. Introducing Claude Artifacts. Anthropic Blog, June 2024.

14

https://www.docker.com/
https://www.docker.com/
https://jupyter.org/
https://flatpak.org/
https://cursor.sh/

	The Problem: AI Can Generate Code, But Humans Need Applications
	The 99% Problem
	The Raw Directory Problem
	The Missing Layer

	Precedent: The macOS Application Bundle
	NeXTSTEP's Insight
	The Bundle Contract
	From Native Bundles to Magic Folders

	The Magic Folder Protocol (MFP)
	Definition
	Core Principles
	The Three-Layer Architecture
	AI Re-Entrancy

	Manifest Specification
	Marker File Convention
	MFP-App Bundle Manifest
	MFP-Skill Bundle Manifest
	Automatic Marker Generation
	Design Rationale

	Polymorphic Type System
	MFP Bundle Types
	MFP-App Bundle: Runtime Subtypes
	Visual Overview: How MFP Types Are Presented
	Type Composition
	Extensibility

	Runtime Handler Declaration
	The Handler Model
	Handler Registration
	Ephemeral vs. Persistent Execution
	Why Runtime-Specific Handlers Matter

	Security Model
	Principle of Least Privilege
	Sandboxed Execution
	Provenance Tracking

	Implementation: Buda Agent Drive
	Architecture
	BudaSpaceDrive: S3-Based Read Access
	Skill Bundle Discovery
	Dual Access Pattern

	Evaluation
	Usability Study
	Discovery Efficiency
	Overhead

	Related Work
	Application Bundles
	Jupyter Notebooks
	Docker and Containers
	AI Artifact Systems
	File-Augmented Retrieval

	Future Work
	Conclusion
	Appendix A: Bundle Mechanism Comparison
	Appendix B: Skill Bundle Case Study
	Creation
	Discovery
	Presentation
	Activation

	Appendix C: Integration with FAR
	The Two-Layer Model
	Bidirectional Enhancement
	Unified Vision

