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Abstract

AI coding agents—Claude Code, Codex, GitHub Copilot—cannot read binary
files. A .png, .pdf, or .xlsx is opaque to any large language model. In a typical
enterprise repository, 30–40% of files are non-text, yet they contain critical con-
text: architecture diagrams, financial reports, design specifications, data schemas.
Current solutions—RAG, grep, vector search—all require runtime infrastructure.
We propose File-Augmented Retrieval (FAR): it adds a .meta next to every
file so coding agents can actually understand PDFs, images, spreadsheets, and
videos—making every file readable to AI via persistent sidecars. Each .meta
contains the extracted content as Markdown with a minimal YAML provenance
header. No vector database. No embedding service. No runtime pipeline. An
agent simply reads the .meta file.
Inspired by Unity Engine’s .meta asset pipeline, FAR augments files at file
time rather than query time. On a 10,000-file corpus, FAR achieves 82.6% file-
discovery accuracy (vs. 58.7% for RAG) with zero infrastructure.

RAG performs retrieval at query time. FAR performs augmentation at file time.

1 The Blind Spot: AI Agents Cannot Read Files

The POSIX file system, designed in the 1970s, exposes files as named byte sequences. This abstrac-
tion served humans well for fifty years. But it has a fatal flaw for the AI era: files are opaque to
language models (OpenAI, 2023; Touvron et al., 2023).

When Claude Code encounters architecture-diagram.png in a repository, it sees nothing.
When Codex encounters quarterly-report.pdf, it sees nothing. When GitHub Copilot encoun-
ters user-data.xlsx, it sees nothing.

These are not edge cases. In a typical enterprise repository:

• 30–40% of files are non-text (images, PDFs, spreadsheets, videos)
• Design specifications live in .fig and .sketch files
• Architecture decisions are documented in .pdf exports
• Data schemas are embedded in .xlsx spreadsheets
• Meeting recordings contain critical decisions in .mp4 files

An AI agent operating without access to these files is like a developer who can read code but is
forbidden from looking at the design docs, the architecture diagrams, or the product requirements.
They can write code, but they cannot understand why.

This is the blind spot. And it is enormous.
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2 Why RAG Is Not the Answer

The instinctive response is: “Use RAG.” Retrieval-Augmented Generation (Lewis et al., 2020) has
become the default paradigm for grounding LLMs in external knowledge. But RAG has three struc-
tural problems that make it inadequate for agent file navigation.

2.1 Problem 1: Runtime Infrastructure Dependency

Document Chunk Embed Vector DB

Query Embed Search Top-k

Feed to LLM

Required (always running):
• Embedding service
• Vector database
• Retrieval pipeline
• Chunking service

Figure 1: The RAG pipeline requires four always-running services. No services = no knowledge.

A coding agent working on a local repository at 2 AM cannot access knowledge if the RAG infras-
tructure is down, misconfigured, or simply not set up (Figure 1).

2.2 Problem 2: Lossy Chunking Destroys Structure

RAG chunks documents into 500–1000 token fragments. This destroys:

• Table structure (a revenue table split across chunks is meaningless)
• Cross-references (“see Figure 3” points to nothing)
• Document hierarchy (headings, sections, logical flow)
• Multi-page reasoning (conclusions that depend on earlier premises)

The agent receives fragments, not documents. It gets puzzle pieces, not the picture.

2.3 Problem 3: Binary Blindness

Most RAG systems handle text. A .pdf might get text-extracted (poorly). But .png, .xlsx, .mp4,
.fig? These require format-specific preprocessing before they can even enter the RAG pipeline.
Most never do.

2.4 The Broader Landscape

RAG is not alone in falling short:

Table 1: Existing approaches and their limitations

Approach Limitations

grep / ripgrep Text-only. No binaries. No semantics.
RAG Needs infrastructure. Lossy chunks. No binary sup-

port.
Vector DB Needs infrastructure. Loses structure. Agent cannot

“read” a vector.
Full-text index Keyword-only. Needs index server. No semantic un-

derstanding.
llms.txt One file per project. Not scalable. No per-file granu-

larity.
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Common flaw: all require runtime infrastructure, or cannot handle binary files, or both.

What if there were a simpler approach?

3 An Unexpected Inspiration: Unity’s .meta Files

In 2005, Unity Technologies faced a structurally identical problem—not for AI agents, but for a
game engine.

Game assets are heterogeneous binary files: textures (.png), 3D models (.fbx), audio (.wav),
animations (.anim). The engine must understand each one, track dependencies between them, and
process them deterministically across different machines.

Unity’s solution was elegant: every asset gets a persistent text sidecar.

player.png

player.png.meta
guid: 8f3c7b0d
textureType: Sprite
mipmapEnabled: 0
maxSize: 2048

Library/Artifacts/ab1234... GPU-ready format

makes binary understandable

Figure 2: Unity’s asset pipeline: every binary file gets a text .meta sidecar for the engine.

Key properties of Unity’s .meta system:

1. Persistent: The .meta lives on disk, committed to version control
2. Sidecar: The original file is never modified
3. Deterministic: Same asset + same settings = same .meta
4. Universal: Every asset gets one, no exceptions

Twenty years later, AI agents face the same problem Unity solved: how do you make heterogeneous
binary files understandable to a system that cannot read them natively?

Unity’s answer: give every file a text sidecar.

Our answer is the same.

4 File-Augmented Retrieval

4.1 The Core Idea

File-Augmented Retrieval (FAR) is a retrieval paradigm that augments files at the boundary with
persistent semantic sidecars, enabling coding agents to retrieve knowledge directly from the filesys-
tem.

The idea is elegantly straightforward:

report.pdf report.pdf.meta

screenshot.png screenshot.png.meta

budget.xlsx budget.xlsx.meta

standup.mp4 standup.mp4.meta

full text + tables

caption + OCR

sheets as Markdown

transcript + topics

Figure 3: FAR generates a .meta sidecar for every file, containing extracted content as Markdown.
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FAR requires no vector database, no embedding service, no retrieval pipeline, and no dedicated
SDK. The agent reads the .meta file directly from the filesystem (Figure 3).

FAR requires no vector database, no embedding service, no retrieval pipeline, and no dedicated
SDK. The agent reads the .meta file directly from the filesystem.

4.2 RAG vs FAR: The Paradigm Shift

RAG = augment at QUERY time
File exists → agent asks question → chunk → embed → search → retrieve
top-k
Result depends on chunk boundaries and embedding quality

FAR = augment at FILE time
File exists → extract once → .meta persists → agent reads → done
Complete file-level content, always available, zero latency

RAG makes queries smarter. FAR makes files readable.

Figure 4: The paradigm shift: RAG operates at query time; FAR operates at file time.

4.3 Architectural Comparison

Document Chunker Embedder Vector DB

Query Embedder Search Top-k 5+ components, 3+ services, always running

(a) RAG: query-time retrieval

File Extractor .meta file (runs once)

Agent Read .meta Done — full context

1 component, 0 services

(b) FAR: file-time augmentation

Figure 5: Architectural comparison. RAG requires persistent infrastructure; FAR produces static
files.

4.4 Five Properties of FAR

1. File-boundary augmentation: Knowledge attached at file level, not chunked into frag-
ments

2. Persistent representation: .meta lives on disk, survives restarts, needs no running service
3. Deterministic rebuild: Same source + same pipeline = same .meta
4. Agent-native access: No SDK—agents read .meta files directly
5. Format-agnostic: Works for any file type (PDF, image, audio, video, spreadsheet, code)
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5 The .meta Sidecar: What’s Inside

The .meta file is not configuration. It is not an index pointer. It is the extracted content itself—the
AI-readable representation of the source file.

5.1 Two-Layer Structure

YAML Frontmatter (Header) — “Is this stale?”
• source hash (SHA-256) • MIME type, file size
• pipeline version • extraction timestamp

Markdown Body (Content) — “What does the file contain?”
• Full extracted text • Tables as Markdown tables
• Figures as captions • OCR results, transcripts
• Structure preserved

.meta

Figure 6: Two-layer anatomy of a .meta sidecar file.

The header is minimal—just enough for rebuild decisions. The body is what agents consume.

5.2 PDF -¿ .meta

Listing 1: Example .meta sidecar for a PDF financial report (report.pdf.meta)
---
far_version: 1
source:

sha256: "a1b2c3d4 ..."
mime: "application/pdf"

extract:
pipeline: "pdf_layout@2 .0"
extracted_at: "2026 -02 -16 T07 :21:00Z"

layout:
pages: 24
tables: 6

---
# report.pdf

## p01: Executive Summary

Revenue grew 23% YoY driven by APAC expansion.
EBITDA margins improved to 18.2%.

## p03: Table 1 - Revenue by Region

| Region | Q3 2025 | Q3 2024 | Growth |
| --- --- --- --- --- | --- --- --- | --- --- --- | --- --- --|
| Asia -Pacific | $2.3M | $1.8M | +28% |
| North America | $1.9M | $1.7M | +12% |
| Europe | $1.1M | $1.0M | +10% |

## p08: Figure 2 (caption)

Monthly active users Jan 2024 - Sep 2025,
showing 3.2x growth in APAC segment.

5.3 Image -¿ .meta
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Listing 2: Example .meta sidecar for a UI screenshot (login-screen.png.meta)
---
far_version: 1
source:

sha256: "d4e5f6 ..."
mime: "image/png"
dimensions: "1920 x1080"

extract:
pipeline: "vision_caption+ocr@1 .1"

---
# login -screen.png

## Visual Description

Login page for a SaaS product. White background , centered
card. Purple logo top center. Two input fields
(email , password), blue "Sign␣In" button.

## OCR Text

- "Sign␣in␣to␣MyApp"
- "Email␣address"
- "Password"
- "Forgot␣password?"

## UI Elements

- Form: 2 text inputs , 1 submit button
- Links: forgot password , sign up
- Layout: centered card , ~400px

5.4 Spreadsheet -¿ .meta

Listing 3: Example .meta sidecar for a spreadsheet (budget.xlsx.meta)
---
far_version: 1
source:

sha256: "g7h8i9 ..."
mime: "application/vnd.openxmlformats -spreadsheetml.sheet"

extract:
pipeline: "xlsx_parser@1 .0"

---
# budget.xlsx

## Sheet 1: Annual Budget

| Category | Q1 | Q2 | Q3 | Q4 |
| --- --- --- --- -| --- --- -| --- --- -| --- --- -| --- --- -|
| Engineering | $500K | $520K | $540K | $560K |
| Marketing | $200K | $180K | $250K | $220K |

## Sheet 2: Headcount

| Department | Current | Q4 Target |
| --- --- --- --- -| --- --- --- | --- --- --- --|
| Engineering | 45 | 52 |

5.5 Video -¿ .meta

Listing 4: Example .meta sidecar for a video recording (standup.mp4.meta)
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---
far_version: 1
source:

sha256: "m3n4o5 ..."
mime: "video/mp4"
duration: "00:12:34"

extract:
pipeline: "whisper_large@1 .0"

---
# standup.mp4

## Transcript

[00:00] Alice: Backend updates first.
[00:15] Bob: Billing done. PR #342 ready.
Blocker: webhook rate limiting.
[02:30] Carol: Dashboard 80% done.

## Key Topics

- Billing integration (PR #342)
- Webhook rate limiting (blocker)
- Dashboard charts (80% complete)

6 Extraction Pipeline

Input: raw file

Stage 1: IDENTITY
SHA-256(file) → compare with .meta

Stage 2: ROUTE
MIME detect → select extractor

Stage 3: EXTRACT
Run extractor on file

Stage 4: NORMALIZE
Structure as Markdown (temp=0)

Stage 5: WRITE
YAML header + MD body → .meta

Match? → SKIPcache hit

Figure 7: FAR extraction pipeline. Each file passes through five deterministic stages.

Every file gets a .meta. If the primary extractor fails, a fallback produces metadata-only output. No
file is left without a sidecar.

7 Directory-Level Aggregation

Agents need to understand directories, not just files. FAR generates .dir.meta:

An agent can understand an entire project by reading project/.dir.meta.
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Table 2: Extractor registry

MIME Extractor Tools

application/pdf PdfExtractor pdfminer, tabula
image/* VisionExtractor GPT-4V, tesseract
audio/*, video/* MediaExtractor Whisper, ffmpeg
text/x-* (code) CodeExtractor tree-sitter
application/xlsx SheetExtractor openpyxl
* (fallback) FallbackExtractor libmagic

Algorithm 1: FAR extraction for a single file
Input: File f , existing sidecar f.meta (if any)
Output: Updated sidecar f.meta

1 h← SHA-256(f);
2 if f.meta exists and f.meta.source.sha256 = h then
3 return f.meta ; // cache hit
4 end
5 m← detectMIME(f);
6 E ← lookupExtractor(m) ; // e.g. PdfExtractor
7 content← E.extract(f);
8 md← normalize(content) ; // Markdown, temp=0
9 header← {sha256 : h, mime : m, pipeline : E.version};

10 write(f.meta, header, md);
11 return f.meta;

8 How Agents Use FAR

No SDK. No API. One rule in the agent’s instructions. Modern AI agents follow a ReAct-style loop
(Yao et al., 2023): observe, reason, act. FAR integrates seamlessly—the agent observes a binary
file, reads its .meta sidecar, and reasons over the extracted content using chain-of-thought (Wei et
al., 2022):

Listing 5: Add to AGENTS.md or system prompt
When you encounter a binary file you cannot read
(.png , .pdf , .xlsx , .mp4), check for a .meta file
beside it. The .meta contains extracted content as
Markdown. For directory overviews , read .dir.meta.

9 Evaluation

10,000-file corpus: 4,200 code, 1,800 PDFs, 1,500 images, 800 spreadsheets, 1,200 text, 500 au-
dio/video.

Table 3: File discovery accuracy across retrieval methods on a 10,000-file heterogeneous corpus

Method Acc. Binary Offline Infra

grep 31.2% No Yes None
RAG (LangChain) 58.7% Partial No Heavy
Vector + rerank 52.1% Partial No Heavy
FAR (.meta) 82.6% Yes Yes None

FAR wins because agents get complete file-level content, not lossy chunks (Figure 10). The
.dir.meta hierarchy helps discover related files the agent wouldn’t have queried for.
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project/ .dir.meta “What is this project?”

src/ .dir.metadocs/ .dir.metaassets/ .dir.meta

report.pdf .metalogo.png .meta

Figure 8: Directory-level .dir.meta files aggregate child semantics recursively.

Agent sees: architecture.png

Can I read this directly? No

architecture.png.meta exists? Yes

Read .meta→ “3 microservices: auth, billing, API gateway. . . ”

Full context acquired. Continue task.

RAG FAR

Latency 200–500 ms <10 ms
Infrastructure 3+ services 0
Content Fragments Complete

Figure 9: Agent workflow with FAR: a simple fallback to .meta sidecars.

10 Determinism, Rebuild, and Security

10.1 Cache Invalidation

The YAML frontmatter enables precise, deterministic cache invalidation:

stale(f) =


true if SHA256(f) ̸= f.meta.source.sha256

true if Vpipeline ̸= f.meta.extract.pipeline

false otherwise
(1)

Same source file + same pipeline version = same .meta output. All LLM-based extraction uses
temperature: 0, top p: 1, and version-pinned prompts to ensure reproducibility.

10.2 Rebuild Strategy

In practice, incremental rebuilds are fast: only files whose content hash has changed are re-extracted.
A 10,000-file repository with 50 changed files requires only 50 extraction calls.

10.3 Security and Privacy

FAR supports a .farignore file (following .gitignore syntax) for excluding sensitive files and
directories from extraction. Additional security measures include:

• PII redaction: Configurable rules to strip personally identifiable information from ex-
tracted content before writing to .meta
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(b) Cross-file reasoning accuracy

Figure 10: FAR outperforms RAG-based methods on both file discovery and cross-file reasoning
tasks.

Table 4: Cross-file reasoning accuracy: multi-hop questions requiring information from multiple
files

Method Accuracy Files Found

RAG (chunked) 34.1% 1.8 avg
Vector + rerank 41.3% 2.4 avg
FAR + .dir.meta 71.9% 4.2 avg

• Encrypted sidecars: The Markdown body can be encrypted while leaving the YAML
header (hash, MIME type) in plaintext for rebuild decisions

• Selective extraction: Directories can be marked as “metadata-only,” generating .meta
files with file type and size but no content extraction

11 Future Work
1. Incremental extraction: Rather than re-extracting entire files, use diff-based algorithms to

update only modified sections of a .meta sidecar, reducing rebuild time for large corpora.
2. Multi-model consensus: Run N extraction models in parallel and vote on output qual-

ity, improving reliability for complex files such as multi-column PDFs and handwritten
annotations.

3. Semantic diff: Track meaning-level changes across Git commits by comparing successive
.meta versions, enabling agents to understand what changed in a binary file without re-
reading it.

4. FAR Protocol standardization: Formalize the .meta format as an open standard (RFC-
style), enabling interoperability across extraction tools, agents, and CI/CD pipelines.

5. FAR + RAG hybrid: Use .meta files as clean, pre-structured input for RAG pipelines,
replacing lossy chunking of raw documents with high-fidelity file-level content.

6. MCP integration: Expose FAR as a Model Context Protocol (Anthropic, 2024) resource
server, allowing agents to discover and read .meta files through a standardized tool inter-
face.

12 Conclusion

File-Augmented Retrieval starts from a simple observation: AI coding agents cannot read 30–40%
of files in a typical repository. Binary files—PDFs, images, spreadsheets, videos—contain critical
context that remains invisible to language models, even as these models grow increasingly capable
(Vaswani et al., 2017; OpenAI, 2023).

RAG addresses this gap with runtime infrastructure: embedding services, vector databases, and
retrieval pipelines. FAR takes a fundamentally different approach: augment files once at file time
with persistent .meta sidecars containing the extracted content as Markdown.
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Figure 11: Storage overhead on 10,000-file corpus (2.3 GB). FAR: 146 MB (6.3%), RAG: 890 MB
(38.7%).

For each file f

.meta
exists? Extract, create .meta

SHA-256
match?

Skip (cache hit)

Re-extract

Pipeline
changed?

Force re-extract all

No

Yes

Yes

No

check

Yes

Figure 12: Rebuild decision tree. Only files with changed content hashes are re-extracted.

The result is a retrieval paradigm with three distinctive properties: (1) zero runtime infrastructure—
agents read .meta files directly from the filesystem; (2) complete file-level content preservation—no
lossy chunking; and (3) deterministic reproducibility—same source file and pipeline always produce
the same sidecar.

Inspired by Unity Engine’s two-decade-old insight that every game asset needs a text sidecar for the
engine to understand it, FAR applies the same principle to a new consumer: AI coding agents.

Our evaluation on a 10,000-file heterogeneous corpus shows FAR achieving 82.6% file-discovery
accuracy compared to 58.7% for RAG, with 6.3% storage overhead and no running services.

RAG performs retrieval at query time.
FAR performs augmentation at file time.

A Deep Dive: Why File-Level Beats Chunk-Level

The fundamental architectural difference between RAG and FAR is where augmentation happens:

Augmentation Granularity
=========================

RAG: Document -> [chunk1] [chunk2] [chunk3] ...
Each chunk: ~500 tokens, no structure
Query retrieves: 3-5 chunks (maybe relevant)

FAR: Document -> [complete .meta]
Full document: structure preserved
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Agent reads: entire file context

A.1 The Chunking Problem in Detail

RAG chunking has been widely documented as problematic (StackOverflow, 2024; Katara, 2025).
Consider a financial report with this table:

Original table in report.pdf:
+----------+---------+---------+
| Region | Revenue | Growth |
+----------+---------+---------+
| APAC | $2.3M | +28% |
| NA | $1.9M | +12% |
| Europe | $1.1M | +10% |
+----------+---------+---------+

After RAG chunking (500 tokens):
---------------------------------
Chunk 37: "...APAC $2.3M +28% NA"
Chunk 38: "$1.9M +12% Europe $1.1M..."

The table is split. Context is lost.
"What’s APAC revenue?" might miss.

After FAR extraction:
---------------------
report.pdf.meta contains the FULL table
as a Markdown table. Always complete.

A.2 Retrieval Reliability

RAG retrieval depends on query formulation. If the agent asks the wrong question, it gets the wrong
chunks. FAR sidesteps this entirely: the agent reads the .meta and has all the content.

Retrieval Failure Modes
========================

RAG failure modes:
+- Query doesn’t match embedding space
+- Relevant content split across chunks
+- Table/figure destroyed by chunking
+- Embedding service down
+- Vector DB index stale

FAR failure modes:
+- .meta file doesn’t exist yet
+- (that’s it)

B Case Studies

B.1 Case 1: Coding—Monorepo with 50+ Apps

We deployed FAR in a production TypeScript monorepo containing 50+ SaaS applications, 10,000+
files across code, documentation, images, and design assets.

Before FAR. Coding agents (Claude Code, Copilot) working in this repository could not read .pdf
product requirement documents, could not see .png architecture diagrams, could not parse .xlsx
data schemas, and lost context between sessions.

After FAR. Integration required exactly one addition to AGENTS.md (OpenAI et al., 2025):
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Listing 6: One rule added to AGENTS.md
## Binary File Understanding
When you encounter a file you cannot read directly
(.png , .pdf , .xlsx , .mp4 , .fig), check for a .meta
file beside it containing extracted content.

No code changes. No SDK integration. No infrastructure deployment.

Table 5: Agent effectiveness before/after FAR (50-app monorepo)

Metric Before After FAR

Files agent can understand 62% 97%
Cross-file task accuracy 41% 78%
“I cannot read this” responses 34/100 2/100
Context setup time per session 15 min 0 min

B.2 Case 2: Legal and Compliance

Law firms routinely process thousands of PDF contracts, scanned agreements, and regulatory fil-
ings. A due diligence package may contain 500+ documents totaling millions of tokens. Current
approaches require either per-document multimodal API calls ($2–5 per document) or manual re-
view.

With FAR, each contract is extracted once into a .meta sidecar containing parties, clauses, obliga-
tions, and dates as structured Markdown. A legal AI agent reviewing the package reads all .meta
files directly—no multimodal API calls at query time. For a 1,000-document corpus, this reduces
per-session token cost from millions of tokens to approximately 100K tokens (the .meta files are
10–20x smaller than raw multimodal output), and eliminates the $2,000–5,000 in repeated API costs
entirely.

B.3 Case 3: Administrative and Office Operations

Administrative AI agents operate over local file systems filled with invoices (PDF), receipts (im-
ages), spreadsheets (XLSX), and presentation decks (PPTX). In a typical office file system, approx-
imately 80% of files are opaque to LLMs (OpenAI, 2023). An agent asked “What was our total
office supply spending in Q3?” cannot answer without reading invoice PDFs and receipt images.

FAR pre-extracts all binary files into .meta sidecars. The agent reads structured Markdown contain-
ing line items, amounts, and dates—answering the query by scanning text files rather than making
dozens of multimodal API calls. This is particularly impactful for privacy-sensitive environments
where files cannot be uploaded to external APIs; FAR extraction can run locally with open-source
models.

B.4 Case 4: Marketing and Creative Production

Marketing teams manage large volumes of visual assets: campaign images, video ads, brand guide-
lines (PDF), and analytics reports. The paradox: the most important assets are the ones AI agents
cannot read.

Listing 7: Marketing asset .meta sidecars enable brand consistency checking
--- campaign_hero.png.meta ---
# campaign_hero.png
## Visual Description
Hero banner for Q4 campaign. Product X on blue
gradient. Headline: "Ship␣Faster". CTA: green.

--- product_demo.mp4.meta ---
# product_demo.mp4
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## Transcript
[00:00] Logo animation [00:15] Feature walkthrough
[01:30] Customer testimonial [02:00] Pricing CTA

--- brand_guidelines.pdf.meta ---
# brand_guidelines.pdf
Full brand guide: color codes , typography rules ,
logo usage , spacing requirements.

An AI marketing agent can now verify brand consistency across assets, generate reports on asset us-
age, and ensure campaign images match guidelines—all by reading .meta files without multimodal
API calls.

B.5 Cross-Industry Summary

Table 6: FAR applicability across industries

Industry Key File Types Pain Point FAR Benefit

Software Diagrams, specs, PDFs Binary context gap Agent-readable context
Legal Contracts, scans Token cost, privacy Pre-extracted, offline
Admin Invoices, receipts 80% files opaque Full file coverage
Marketing Images, videos, PDFs Creative assets invisible Asset-level context
Research Papers, datasets Knowledge fragmented Searchable drive
Healthcare Medical images, reports Compliance, cost Encrypted .meta

FAR is not limited to coding agents. Any domain where (1) files are heterogeneous, (2) AI
agents need to understand file contents, (3) multimodal API costs are prohibitive at scale, or (4)
offline/privacy-sensitive operation is required—FAR applies. This positions FAR as foundational in-
frastructure for enterprise AI adoption across industries (Talebirad & Nadiri, 2024; Xi et al., 2023).

C Formal Model

C.1 Definitions

Let F be a filesystem, f ∈ F a file, and A an AI agent with reading capability R(f), where R(f)
returns the textual content an agent can extract from f (or ∅ if the file is unreadable):

R(f) =

{
content(f) if f is text
∅ if f is binary

(2)

The semantic gap G(F) is the fraction of files an agent cannot read:

G(F) = |{f ∈ F : R(f) = ∅}|
|F|

(3)

In typical repositories, G(F) ≈ 0.35 (35% binary files).

C.2 FAR Transformation

FAR defines a transformation T that maps any file to a readable sidecar:

T : f → f.meta where R(f.meta) ̸= ∅ ∀f (4)

After FAR, the agent’s effective reading capability becomes:
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R′(f) =

{
content(f) if f is text
content(f.meta) if f is binary

(5)

The semantic gap reduces to:

G′(F) = |{f ∈ F : R′(f) = ∅}|
|F|

≈ 0 (6)

C.3 Determinism

FAR guarantees deterministic extraction:

T (f, π, v) = T (f, π, v) ∀f, π, v (7)

where π is the pipeline configuration (e.g., pdf layout@2.0) and v is the model version. Cache
validity:

valid(f.meta) ⇐⇒ H(f) = f.meta.source.sha256 ∧ π = f.meta.extract.pipeline (8)

C.4 Information Preservation

Let I(x) denote the information content of x. For RAG with chunking function C:

I

(⋃
i

Ci(f)

)
≤ I(f) (lossy: structure destroyed) (9)

For FAR:

I(T (f)) ≈ I(f) (near-lossless: structure preserved) (10)

The approximation accounts for extraction imperfections (e.g., OCR errors, caption quality).

D FAR Protocol Specification (Draft v0.1)

D.1 File Naming

Source file: {name}.{ext}
Sidecar file: {name}.{ext}.meta
Directory meta: .dir.meta

Examples:
report.pdf -> report.pdf.meta
logo.png -> logo.png.meta
src/ -> src/.dir.meta

D.2 YAML Frontmatter Schema

Listing 8: Required frontmatter fields
---
far_version: 1 # REQUIRED
source:

sha256: string # REQUIRED
mime: string # REQUIRED
size: integer # OPTIONAL (bytes)
dimensions: string # OPTIONAL (images)
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duration: string # OPTIONAL (media)
extract:

pipeline: string # REQUIRED
extracted_at: ISO8601 # REQUIRED
deterministic: boolean # OPTIONAL

layout: # OPTIONAL
pages: integer
sheets: integer
tables: integer

---

D.3 Markdown Body Convention

• H1: filename (e.g., # report.pdf)
• H2: sections/pages/sheets
• Tables: standard Markdown tables
• Figures: caption text under H2 with “(caption)” suffix
• OCR: bulleted list under “OCR Text” heading

D.4 .farignore

Follows .gitignore syntax:

Listing 9: .farignore example
# Sensitive
.env*
*.pem
secrets/

# Large media (extract on demand)
*.mp4
node_modules/

D.5 Compatibility

FAR is designed to work with:

• AGENTS.md (OpenAI et al., 2025): Add FAR rule to agent instructions
• llms.txt (Howard, 2024): FAR is per-file; llms.txt is per-site. Complementary.
• MCP (Anthropic, 2024): FAR can be exposed as an MCP resource server
• Git: .meta files are text, diff-friendly, version-controllable

E Context Efficiency: FAR as a Token Optimizer

E.1 The Context Rot Problem

Recent research from Chroma Research (July 2025) demonstrates that LLM accuracy declines con-
sistently as input length grows—a phenomenon termed “context rot” (Chroma Research, 2025).
Even models with million-token context windows show degraded performance at scale (TDS, 2025).

This has direct implications for coding agents. When an agent loads an entire codebase into context,
it wastes tokens on files it cannot interpret (binaries) and files irrelevant to the current task.

E.2 Selective Loading

Because .meta files are plain Markdown, agents can selectively load only relevant sidecars. The
.dir.meta hierarchy acts as a table of contents:
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Figure 13: FAR optimizes token usage: compact .meta files are 10–50× smaller than multimodal
API output.

1. Read project/.dir.meta — understand structure 2K
tokens

2. Read docs/.dir.meta — identify relevant directory 500
tokens

3. Read report.pdf.meta — full file content 3K tokens

Total: 5.5K tokens for full context vs. RAG: 15–30K noisy chunks vs. raw: impossible

Figure 14: Selective loading: agents navigate the .dir.meta hierarchy to minimize token usage.

E.3 Comparison: Tokens per Unit of Understanding

F FAR in the Multi-Modal AI Landscape

F.1 The Multimodal Promise vs Reality

Modern LLMs (GPT-4V, Claude 3.5, Gemini) can process images and PDFs natively via multimodal
APIs. This raises a question: does FAR become obsolete with multimodal models?

No. For three reasons:

Why Multimodal APIs Don’t Replace FAR
=======================================

1. COST
Multimodal API: ~$0.01-0.05 per image
FAR .meta: $0 per read (already extracted)
At 1,500 images x 10 reads each = $150-750
vs $0 with FAR

2. LATENCY
Multimodal API: 2-10 seconds per file
FAR .meta read: <10 milliseconds
1000x faster

3. OFFLINE / LOCAL
Multimodal API: requires internet + API key
FAR .meta: works offline, on airplane,
in air-gapped environments
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Table 7: Token efficiency per file understanding

Method Tokens Understanding Efficiency

Raw binary 0 None 0%
Multimodal API 10-50K Good Low
RAG chunks 2-5K Partial Medium
FAR .meta 1-5K Complete High

4. DETERMINISM
Multimodal API: different response each call
FAR .meta: same content every time

5. TOKEN EFFICIENCY
Multimodal API: image = 1K-10K tokens
FAR .meta: caption = 100-500 tokens
10-20x more efficient

F.2 FAR as Pre-Computation Layer

FAR can be understood as pre-computed multimodal understanding. Instead of paying the multi-
modal API cost at every agent interaction, FAR pays it once during extraction and caches the result
as plain text.

Without FAR (pay per interaction):
==================================
Agent session 1: process image -> $0.03
Agent session 2: process image -> $0.03
Agent session 3: process image -> $0.03
...
100 sessions: $3.00 per image

With FAR (pay once):
====================
Extraction: process image -> $0.03 (once)
Agent session 1: read .meta -> $0
Agent session 2: read .meta -> $0
...
100 sessions: $0.03 total

F.3 Compatibility with Emerging Standards

FAR is designed to complement, not compete with, the emerging AI infrastructure ecosystem:

+---------------------------------------------+
| AI Infrastructure Stack (2025) |
+---------------------------------------------+
| |
| AGENTS.md -> Agent instructions |
| llms.txt -> Site-level AI summary |
| FAR .meta -> Per-file AI content <-- |
| MCP -> Tool/resource protocol |
| RAG -> Query-time retrieval |
| Vector DB -> Embedding storage |
| |
| FAR sits at the FILE layer. |
| Everything else sits above or below. |
+---------------------------------------------+
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Table 8: FAR’s position in the AI infrastructure stack

Standard Scope Relationship to FAR

AGENTS.md Project instructions Contains FAR usage rule
llms.txt Site/project summary FAR is per-file granularity
MCP Tool protocol FAR can be MCP resource
RAG Query retrieval FAR provides clean input
Vector DB Embedding store FAR replaces or feeds into

G Limitations

No system is without trade-offs. FAR has clear limitations:

1. Extraction quality ceiling: FAR is only as good as its extractors. Complex layouts (multi-
column PDFs, nested tables, handwritten annotations) may extract imperfectly. OCR errors
propagate into .meta files.

2. Storage overhead: While modest (6.3% in our evaluation), .meta files add to repository
size. For repositories with thousands of large binary files, this may be non-trivial.

3. Staleness: If a source file changes but the extraction pipeline is not re-run, the .meta
becomes stale. This requires integration with file watchers or CI/CD pipelines.

4. Not a search engine: FAR does not provide similarity search or semantic querying across
files. For “find all documents about revenue,” RAG or vector search is still needed. FAR
answers “what does THIS file contain,” not “which files are relevant to my query.”

5. Initial extraction cost: The first extraction pass requires LLM API calls for vision/sum-
marization. For a 10,000-file corpus, this may cost $50–200 depending on file types and
models used.

6. Git repository bloat: Committing .meta files to Git increases repository size. Teams may
choose to .gitignore them and regenerate on clone, trading storage for reproducibility.

When FAR is NOT the right tool:
================================
[N] Semantic search across 1M documents
[N] Real-time streaming data
[N] Frequently changing binary files (>100/day)
[N] Environments where disk space is critical

When FAR IS the right tool:
============================
[Y] Coding agents navigating repositories
[Y] Mixed code + binary file projects
[Y] Offline / local-first development
[Y] Deterministic, reproducible context
[Y] Zero-infrastructure requirement
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