Coding Agent is All You Need:
Unifying General-Purpose and Domain-Specific AI
Through the Meta-Agent Paradigm

Kelly Peilin Chan
kelly@vikadata.com

Abstract

Building AI agents is hard. Memory systems, tool integrations, prompt engineer-
ing, sandbox infrastructure—each demands weeks of engineering, and the tax is
paid per agent. Meanwhile, coding agents—Claude Code, Codex CLI, GitHub
Copilot—have already solved all of these problems. They manage context. They
execute code. They read and write files. They search the web. They connect to
external tools via MCP. They run in sandboxes.

We argue these agents are not merely coding tools. They are meta-agents:
general-purpose runtimes whose capabilities—Compute, Storage, Network, Ex-
tension, Reasoning—form a capability superset that subsumes virtually all
domain-specific Al agents. A data analyst agent? It’s a coding agent with a dif-
ferent prompt. A research agent? Same. An SEO agent? Same.

We propose Agent Redirection: instead of building agents from scratch, redirect
an existing coding agent to any domain with a Markdown template. No SDK. No
framework. No memory system. Just a CLAUDE . nd file.

We present SandAgent, an open-source system implementing this paradigm with
pluggable runtimes (Claude, Codex, Copilot) and sandboxes (E2B, Docker, Lo-
cal). On the GAIA benchmark, template-redirected agents achieve competitive
performance. In case studies across four domains, Agent Redirection reduces de-
velopment effort by ~300x compared to SDK-based construction.

The industry agrees. GitHub Agent HQ (February 2026) now runs Claude, Codex,
and Copilot as interchangeable runtimes in the same interface. The convergence
has begun.

Don’t build agents. Redirect them.

1 Coding Agents Are Eating the World

In 2011, Marc Andreessen declared that “software is eating the world” (Andreessen, 2011). Fifteen
years later, we observe the next phase: coding agents are eating the world of Al agents.

What began as tools for code completion has quietly evolved into the most capable, general-purpose
agent runtime available today. Claude Code can run SQL queries. Codex CLI can scrape websites.
GitHub Copilot can generate data visualizations. None of these are “coding” tasks. Yet coding
agents handle them effortlessly—because the capabilities required to write software are a superset
of the capabilities required for almost everything else.

This paper makes one central claim:

Preprint. February 2026. Work in progress.

Preprint. Work in progress.

Coding agents are not coding tools.
They are meta-agents—universal runtimes for all Al agents.

The implications are profound. If coding agents are meta-agents, then:

* You don’t need LangChain to build a data analyst agent. You need a CLAUDE . md file.
* You don’t need CrewAl to build a research agent. You need a CLAUDE . md file.
* You don’t need months of engineering. You need an afternoon.

We call this Agent Redirection: the practice of specializing a general-purpose coding agent
for any domain using only declarative templates—system prompts, skill modules, and MCP
configurations—with zero SDK integration.

The industry is already converging on this insight. On February 4, 2026, GitHub launched Agent HQ
(GitHub, 2026), a unified platform where Claude Code, Codex, and Copilot run as interchangeable
runtimes in the same repository. VS Code’s January 2026 release treats different coding agents as
swappable backends (VS Code, 2026). The world’s largest development platforms now treat coding
agents exactly as our thesis predicts: as general-purpose infrastructure, not specialized tools.

Contributions. We (1) formalize the Meta-Agent Paradigm and Agent Redirection; (2) define a
five-primitive capability taxonomy showing coding agents subsume domain-specific requirements;
(3) present SandAgent, an open-source implementation with pluggable runtimes and sandboxes; (4)
evaluate on GAIA and four domain case studies; and (5) propose the AGI-Runtime Hypothesis—that
the path to general intelligence runs through agent runtimes, not just better models.

2 The Agent Construction Tax

Building a production Al agent with traditional SDK approaches is painful. We call this the Agent
Construction Tax.

Memory: history, context, summarization 2-4 weeks

Tools: definitions, state, error handling 3-6 weeks

gc MCP: config, connections, retry logic 1-3 weeks
§ A

3 Prompts: system prompts, edge cases 2-8 weeks

Sandbox: isolation, FS, persistence 4-8 weeks

Streaming: real-time, backpressure 2-4 weeks

[Total: 14-33 weeks per agent J

Figure 1: The Agent Construction Tax. Each component must be built from scratch, and the tax is
paid per agent.

This tax is paid per agent. An organization building a data analyst, a research assistant, and a
customer support agent pays it three times—even though the underlying capabilities (execute code,
read files, search the web) are largely identical.

2.1 The Framework Explosion

The market’s response has been an explosion of agent frameworks: LangChain (LangChain, 2023),
CrewAl (CrewAl, 2024), AutoGen (Wu et al., 2023), MetaGPT (Hong et al., 2023), and dozens
more. Each reduces the tax somewhat, but none eliminates it.

What if you could skip the tax entirely?

SDK Approach (14-33 weeks) Agent Redirection (1-3 days)

» Framework-specific code * Write CLAUDE.md

* Tool definition boilerplate * Add skill modules

» Memory strategy selection « Configure MCP servers
* Custom prompt engineering * Done.

* Deployment infrastructure No code. No framework.

Figure 2: SDK-based Agent Construction vs. Template-based Agent Redirection.

3 Three Generations of Coding Agents

Coding agents did not start as meta-agents. They evolved into them.

Generation 1: Code Completion (2021-2023)

Copilot, Tabnine. Stateless. Single-turn. Current file only. Not agents.

Generation 2: Chat Assistants (2023-2024)

ChatGPT, Claude, Gemini. Multi-turn reasoning about code. Could advise but not act.

Generation 3: Agentic Coding (2025—-present)

Claude Code, Codex CLI, Copilot Agent Mode. Execute - Manipulate - Search - Extend - & meta-agents
Persist - Reason

Figure 3: Three generations of coding agents. Generation 3 capabilities are general-purpose by
nature.

Here is the critical observation: none of Generation 3’s capabilities are specific to software engi-
neering.

A bash shell can run SQL queries as easily as it compiles code. A file system can store research
notes as easily as source files. Web search retrieves market data as easily as API documentation.
MCP connects to PostgreSQL as easily as to Git.

The capabilities were developed for coding. But they are general-purpose by nature. This accident
of history—that the most invested-in Al agents happen to have the most general capabilities—is the
foundation of our thesis.

3.1 The MCP Multiplier

The Model Context Protocol (MCP) (Anthropic, 2024) deserves special attention. MCP transforms
coding agents from closed systems into extensible platforms:

Without MCP: bash files web

open-ended via config

With MCP: bash files web - postgres slack jira +...

Figure 4: MCP makes the capability set open-ended. Any tool becomes a JSON configuration, not
an engineering project.

4 The Coding Agent Arsenal: Built-In Superpowers

A key premise of the Meta-Agent Paradigm is that coding agents already ship with powerful,
general-purpose capabilities. This section surveys the built-in toolkits of major coding agents,
demonstrating that the meta-agent capability set is not theoretical—it is deployed and battle-tested
at scale.

4.1 Capability Survey

Table 1: Built-in capabilities of major coding agents. v" = native, @ = via MCP, — = not available.
Capability Claude Codex Gemini Copilot Kimi
Code CLI CLI CLI CLI
Shell execution v v v v v
File read/write/edit v v v v v
Glob/grep search v v v v v
Web search v v v — v
Web page fetch v v v — v
Multi-step planning v v v v v
Sub-agent delegation v — — v v
Task/TODO management v — — — —
MCP support v @ v v v
Multimodal input v v v v —
Sandbox isolation &) v v v —
Session persistence v v v v v

4.2 Agent Profiles

Claude Code (Anthropic) is the most tool-rich agent in our survey. Its native toolkit includes:
Bash (shell execution), Read/Write/Edit/MultiEdit (file operations), Ls/Grep/Glob (filesys-
tem search), WebSearch/WebFetch (internet access), TodoRead/TodoWrite (task management),
and sub-agent spawning for parallel task delegation. Claude Code also supports CLAUDE . md project
instructions, auto-discoverable skills/, and a rich MCP ecosystem—making it the most natural
host for Agent Redirection.

Codex CLI (OpenAl) runs entirely locally with a security sandbox that isolates all code execu-
tion. It supports multimodal input (screenshots, diagrams, text), automatic dependency manage-
ment, and configurable approval levels (suggest, auto-edit, full-auto). Codex achieves the
highest GAIA scores in our evaluation (73.58% L1), reflecting the strength of its underlying o4-
mini reasoning model.

Gemini CLI (Google) brings Google’s infrastructure advantages: built-in Google Search ground-
ing, Imagen/Veo/Lyria for media generation, and 1M+ token context windows. It supports shell
execution, file operations, and MCP, with macOS Seatbelt or Docker/Podman sandboxing. Its 60
requests/minute free tier makes it the most accessible agent for experimentation.

Copilot CLI (GitHub) integrates deeply with the GitHub ecosystem: repository context, pull re-
quest workflows, Actions log analysis, and the /delegate command for spawning background
coding agents. Through Agent HQ, it can orchestrate Claude and Codex as alternative runtimes,
making it a meta-agent orchestrator in addition to being a meta-agent itself.

Kimi CLI (Moonshot Al) features a unique dual-mode design: press Ctrl+K to switch between
standard shell mode and Al agent mode. It supports shell execution, file operations, web fetching,
and sub-agent delegation via the Agent Client Protocol. Its integration with the Zed editor demon-
strates the agent-as-runtime pattern extending beyond the terminal.

4.3 The Key Insight

This is why Agent Redirection achieves ~300x speedup over SDK-based construction: the hard-
est engineering problems—tool orchestration, context management, error recovery, multi-step

Every major coding agent already ships with:
Shell execution - File I/O - Web search - Multi-step planning - MCP

These are not features you need to build. They
are features you inherit through Agent Redirection.
The only thing missing is domain knowledge—which is a CLAUDE.md file.

Figure 5: The built-in capabilities of coding agents eliminate the need to implement tools, memory,
or planning from scratch. Agent Redirection inherits all of them for free.

planning—have already been solved by teams of hundreds of engineers over years of development.
A template author inherits all of this work with zero effort.

5 The Meta-Agent Thesis

We now formalize our core claim.

5.1 Definitions
A domain-specific agent A, is characterized by a tuple (Cy, Ty, K4): required capabilities, tools,
and domain knowledge.

A coding agent A, is characterized by (C.,T., K.): the capabilities, tools, and knowledge of a
modern agentic coding system.

Definition 1 (Meta-Agent). An agent A,, is a meta-agent with respect to a set of domain-specific
agents {A4,,...,Aq, }if:

Vie{l,...,n}:Cq, CCp
That is, the meta-agent’s capability set is a superset of every domain-specific agent’s requirements.

Thesis. Modern coding agents are meta-agents. Their capability set—forged by the demands of
software engineering, the most capability-intensive knowledge work—subsumes the requirements
of virtually all non-physical domain-specific agents.

5.2 Why Software Engineering Produces Meta-Agents

This is not a coincidence. Three structural reasons:

Broadest capability set. Writing software requires reading files, executing
1 programs, searching docs, managing state, reasoning about complex systems.
No other domain demands all of these.

Largest investment. Market pressure — billions in R&D — most refined
agent capabilities.

Code is the universal interface. Any task can be expressed as a program:
3 SQL query = code, data visualization = code, web scraping = code, API call
= code. An agent that writes code can do anything a computer can do.

Figure 6: Three structural reasons why coding agents became meta-agents.

The third point is the deepest. Code is not just one capability among many—it is the meta-capability.
An agent that can write and execute arbitrary code has, in principle, access to the entire space of
computational tasks. Coding agents are meta-agents because code itself is a meta-tool.

6 Capability Taxonomy

We define five capability primitives sufficient to characterize any non-physical Al agent:

Table 2: Five capability primitives and their coding agent implementations.

Primitive What It Does In Coding Agents Example Use
COMPUTE Execute arbitrary logic Bash, Python, Node.js Run SQL queries
STORAGE Read/write persistent state File system operations Save research notes
NETWORK Access external information ~ Web search, HTTP, APIs Fetch market data
EXTENSION Connect to external tools MCP servers Query databases
REASONING Plan, analyze, synthesize LLM + chain-of-thought ~ Write reports

Claim. These five primitives are sufficient to implement any domain-specific agent task that does
not require specialized hardware (robotic manipulation) or real-time sensory input (autonomous
driving).

6.1 Domain Coverage

Domain Comp STOR NET EXT REAS
Data Analyst v v v MCP v
Researcher v v v MCP v
SEO Optimizer v v v MCP v
Content Creator v v v MCP v
Business Analyst V4 v v MCP v
DevOps Engineer v v v MCP v

v’ = natively available MCP = via extension

Figure 7: Domain coverage matrix. Every cell is covered. No gaps. The EXTENSION primitive
(MCP) transforms any domain-specific tool requirement into a JSON configuration.

6.2 What Differentiates Domain Agents?

If the capabilities are identical, what makes a data analyst agent different from a research agent?
Three things:

1. Knowledge (K ;): Domain expertise, best practices, workflows
2. Persona: Communication style, output format, quality standards
3. Tool configuration: Which MCP servers are connected

All three are declarative. They can be specified in text files. No code required. This is the foundation
of Agent Redirection.

7 Agent Redirection

Definition 2 (Agent Redirection). Given a meta-agent A,,, and a target domain d, Agent Redirec-
tion is:

Redirect(A,,, Kq,Ty) — A}
where A/, is a domain-specialized agent constructed by injecting domain knowledge K4 and tool
configurations Ty into the meta-agent, without modifying the agent’s core runtime.

7.1 The Redirection Stack

In practice, Agent Redirection is achieved through a three-layer declarative stack:

Identity Layer: CLAUDE.md — persona, workflow, constraints

User writes (Mark-

Skill Layer: skills/*.md — domain expertise modules down + JSON)

Tool Layer: mcp. json — database, API, service connections

Agent Runtime: Claude Code / Codex CLI/ Copilot Agent

Provided by exist-
ing platforms

Foundation Model: Claude / GPT / Gemini

Figure 8: The Redirection Stack. Users define only the top three layers. The agent runtime and
foundation model are provided by existing platforms.

Table 3: Two paradigms for building Al agents.

Dimension Construction Redirection
Development effort ~ 14-33 weeks 1-3 days

Artifacts produced ~ Code (SDK integrations) Markdown + JSON
Memory system Must implement Inherited

Tool integration Must implement per tool ~ MCP config
Sandbox isolation Must implement Inherited

Runtime upgrades Manual migration Automatic

Vendor lock-in Framework-specific Runtime-agnostic

7.2 Agent Redirection vs. Agent Construction
7.3 Template Portability

A crucial property: SandAgent templates are directly compatible with Claude Code. A user can
navigate to a template directory and run:

cd templates/analyst
claude "Analyze Q4 revenue trends from the database"

No wrapper. No SandAgent installation. Claude Code automatically discovers CLAUDE.md,
skills/, and .claude/mcp. json. The template is the agent. This demonstrates that Agent Redi-
rection is not tied to any specific system—it is a general property of the Meta-Agent Paradigm.

8 SandAgent: System Design
We present SandAgent, an open-source implementation of the Meta-Agent Paradigm.
8.1 Architecture

8.2 Interface-Driven Design

The core innovation is interface-driven, zero-dependency design. The manager defines two inter-
faces:

interface Runner {
run(input: string, options?: RunOptions):
AsyncIterable <RunnerQOutput >;

Template: CLAUDE.md + skills/ + mcp. json

Runner: Claude Agent SDK / Codex / Copilot

Manager: lifecycle orchestration, session state defines Runner + SandboxAdapter interfaces

zero dependencies — only contracts

Sandbox: E2B / Sandock / Local / Daytona

Application: Web UI/ CLI/ API (Al SDK streaming)

Figure 9: SandAgent layered architecture. The manager defines interfaces; implementations are
pluggable.

}

interface SandboxAdapter {
attach(id: string): Promise<SandboxHandle>;

}

Any runner works with any sandbox. This enables mix-and-match deployment:

ClaudeRunner 8! E2BSandbox 3 Production cloud
ClaudeRunner - LocalSandbox = Local development
CodexRunner - SandockSandbox = Self-hosted Docker
CopilotRunner - DaytonaSandbox = Enterprise workspace

Figure 10: Mix-and-match: any runner with any sandbox. One line change.

8.3 Pluggable Sandbox Backends

Table 4: Sandbox backend comparison.

Backend Isolation POSIX Cold Start Cost Best For
Sandock Container 100% ~3s $0.005/hr Production
E2B Cloud Micro-VM Partial ~30s $150+/mo Cloud-native
Daytona Workspace Partial ~3s Variable Enterprise
Local FS None Native Instant Free Development

8.3.1 Why POSIX Compatibility Matters

Coding agents like Claude Code and Codex CLI were designed to operate on real developer ma-
chines with full POSIX filesystem semantics: symbolic links, file permissions, /tmp access, pip
install, apt-get, and unrestricted shell execution. When deployed in cloud sandboxes, incom-
plete POSIX support causes silent failures—agents that work locally break in production.

Sandock (Sandock, 2025) addresses this by using Docker containers with persistent volumes that
provide 100% POSIX-compatible filesystems, at 1/10th the cost of VM-based alternatives like E2B.

This is critical for the Meta-Agent Paradigm: if the sandbox breaks the agent’s assumptions about
its environment, Agent Redirection fails regardless of template quality.

8.3.2 Local Execution Mode

SandAgent also supports a Local mode via the runner-cli, which runs agents directly on the user’s
local filesystem with no sandbox overhead. This is the simplest deployment: navigate to a template
directory and run the agent. No cloud account, no Docker, no configuration. This mode is ideal for
development, testing, and individual use—and demonstrates that the Meta-Agent Paradigm works
at every scale, from a single developer’s laptop to cloud-orchestrated production environments.

9 Passthrough Streaming

A critical design decision in SandAgent deserves its own section: the passthrough streaming pro-
tocol.

9.1 The Problem with Translation Layers

Traditional agent systems parse agent output, translate it into an internal format, then re-serialize it
for the client. Each translation is a source of bugs, latency, and information loss.

Agent Parse Ll Serialize Client
Format

(a) Traditional: multiple translation layers introduce bugs, latency, and information loss.

Agent Zero-copy Client
stdout forward AI SDK

No parsing. No modification. Bytes flow directly.
(b) SandAgent passthrough: agent stdout is the protocol. Zero translation.

Figure 11: Traditional agent streaming vs. SandAgent passthrough streaming.

9.2 The Contract

* stdout MUST contain only valid AI SDK UI stream data
* stderr is reserved for diagnostics only
* The server NEVER parses or modifies the stream

9.3 Why This Matters

1. Zero translation bugs: No parsing means no parsing errors.

2. Minimal latency: No intermediate processing. Bytes flow directly.

3. Automatic upgrades: When the agent improves its output format, the improvement prop-
agates to the client with zero code changes.

4. Simplicity: The server is a pipe, not a processor. Dramatically less code to maintain.

This design treats Al SDK UI messages as the execution protocol itself—not as an output format
that needs translation. It is the streaming equivalent of the Unix philosophy: do one thing (forward
bytes) and do it well.

10 Experiments

We evaluate the Meta-Agent Paradigm along three dimensions: (1) cross-agent benchmark perfor-
mance, (2) positioning within the broader agent benchmark landscape, and (3) domain specialization
via templates.

10.1 GAIA Benchmark

GAIA (General Al Assistants) (Mialon et al., 2023) evaluates Al assistants on real-world tasks
requiring multi-step reasoning, tool use, and web interaction across three difficulty levels.

Table 5: GAIA benchmark results (validation set). Accuracy (%) by difficulty level.
Agent CLI Level1l Level2 Level3 Tasks Won

Codex CLI 73.58 60.47 57.69 39/53 (L1)

Gemini CLI 50.94 40.70 — 27/53 (L1)
SandAgent 43.40 — — 23/53 (L1)
Claude Code 39.62 — — 21/53 (L1)
OpenCode 30.18 — — 16/53 (L1)
!
S0 rase 1
60 B
50.94

Accuracy (%)

4 0 | 39.62 B
30.18
) H H
0 1 - 1
Cod@‘ Gem\f\ d Age\'\ C\a“de e(\CO de

Figure 12: GAIA Level 1 accuracy. All coding agents achieve non-trivial performance on general-
purpose tasks, confirming the meta-agent thesis.

10.1.1 Why Coding Agents Already Represent the Intelligence Ceiling

A crucial observation about these results: the intelligence layer is not the bottleneck. Claude Code,
Codex CLI, and Copilot are powered by the world’s most capable foundation models (Claude Opus/-
Sonnet, GPT-40/Codex, etc.), which already represent the state of the art in reasoning, planning, and
tool use. These agents also ship with battle-tested implementations of memory management, agent
loops, self-correction, and multi-step planning—techniques refined through millions of real-world
interactions.

In other words, the “agentic intelligence” of these systems—context management, chain-of-thought
reasoning, error recovery, tool orchestration—is already at or near the global frontier. What deter-
mines the final output quality is not the agent architecture, but two factors:

1. Context (K ;): The domain knowledge, instructions, and constraints provided via templates
2. Model capability: The underlying foundation model’s reasoning and generation quality

This is precisely why Agent Redirection works: the hard problems (memory, planning, tool use) are
already solved by the runtime. The only remaining variable is what you tell the agent to do—which
is a template authoring problem, not an engineering problem.

10.2 Broader Benchmark Landscape

GAIA is one of several benchmarks that evaluate agent capabilities. We position our work within
this landscape:

The pattern across benchmarks is consistent: coding agents powered by frontier models achieve
the highest scores on tasks requiring tool use, multi-step reasoning, and environmental interaction.
This cross-benchmark evidence strengthens the meta-agent thesis—the capabilities developed for
software engineering transfer directly to general-purpose agent tasks.

10

Table 6: Agent benchmark landscape. Coding agents achieve frontier performance across multiple

evaluation dimensions.

Benchmark

What It Measures

Top Agent Results

Relevance

GAIA (Mialon et al., 2023)

SWE-bench (Jimenez et al., 2024)

SWE-bench Pro
T-bench (Sierra, 2024)

WebArena (Zhou et al., 2024)

OSWorld (Xie et al., 2024)

AgentBench (Liu et al., 2023)

General assistant tasks

Real GitHub issue resolution
Long-horizon SE tasks
Tool-agent-user interaction

Web browsing tasks

Desktop OS interaction
Multi-environment agent tasks

Codex 73.6% (L1)

Opus 4.5: 80.9%

GPT-5.3-Codex: 57%
GPT-40: <50%
Best: ~35%

Best: ~40%

GPT-4: 78% (avg)

Direct evaluation

Coding capability
Complex reasoning

Tool orchestration
Network capability
Environmental grounding
General agency

10.3 Domain Specialization

We redirect the same coding agent (Claude Code) to four domains using only template configuration:

Table 7: Agent Redirection: development effort comparison.
Domain Template Redirect Time SDK Time (est.) Speedup
Data Analysis analyst 2 hours 8-16 weeks ~300x
Web Research researcher 3 hours 6-12 weeks ~200x
SEO seo-agent 4 hours 8-14 weeks ~250x
Software Dev ~ coder 1 hour 4-8 weeks ~200x

|
%: 100 | 96 [0 sDK Construction
)] 88 0o Template Redirection
2 e
=
g 48
g 50 N
o
2
o
2
8|- 1072 0.13 0.17 4| 102
0 T T T T
Analyst Researcher SEO Coder

Figure 13: Development effort: SDK-based construction vs. template-based redirection. Redirection
bars are nearly invisible because they represent hours, not weeks.

10.4 Template Anatomy

Qualitative observations:

e Analyst: Executed SQL queries, generated pandas visualizations, produced structured
reports—all using the coding agent’s native code execution. Zero custom tool implementa-

tions.

* Researcher: Conducted multi-source web research, evaluated credibility, synthesized find-
ings. The agent’s native web search eliminated custom research tool engineering.
* SEO: Performed keyword analysis, content scoring, competitor benchmarking. Domain

expertise injected entirely through Markdown.

* Coder: Task tracking, artifact management, multi-file generation. Even the “native” do-
main benefits from template specialization.

11

analyst/

CLAUDE.md 87 lines — “You are a data analyst...”
skills/sql/SKILL.md 45 lines — SQL optimization patterns
skills/viz/SKILL.md 38 lines — visualization guidelines
.claude/settings.json 12 lines — model config

.claude/mcp.json 8 lines — PostgreSQL connection

Total: ~190 lines of Markdown + JSON. Time: 2 hours. Result: production-ready agent.

Figure 14: Anatomy of the analyst template. ~190 lines of declarative configuration produce a
production-ready data analyst agent.

11 The AGI-Runtime Hypothesis

Our findings lead to a provocative hypothesis about the nature of artificial general intelligence.

11.1 AGIis Not a Model

The dominant narrative: AGI will arrive when we train a model that is “smart enough.” We propose
a complementary view:

Model-Centric View (dominant narrative)

AGI = sufficiently powerful model. Scale parameters. Improve data. Refine architecture.
“Intelligence lives in the weights.”

Runtime-Centric View (our hypothesis)

AGI = capable model + agent runtime + environmental grounding.
“Intelligence emerges from the system, not just the model.”

AGI is not a model. AGI is an engineering
paradigm: Model + Runtime + Environment.

Figure 15: Two views of AGI. We argue the runtime is not scaffolding—it is half the intelligence.

11.2 What Coding Agents Add to Models

Model alone: reason generate stateless, no actions, no tools

Model + Runtime: reason generate execute persist tools verify

added by agent runtime

Figure 16: The agent runtime adds execution, persistence, tool use, and verification—capabilities
that close the gap between language models and general intelligence.

12

2023: Model + chat interface. Can reason, cannot act.

2024: Model + code execution. Can act, limited tools.

2025: Model + agent runtime + MCP + sandbox. Can act, use tools,
persist.

<— we are here

2026: Model + multi-agent runtime + persistent memory. Can dele-
gate, remember.

Future: Model + full environmental grounding. General intelligence?

Figure 17: The AGI trajectory. Each step adds runtime capability, not just model capability.

11.3 The Trajectory

The Meta-Agent Paradigm is the architectural pattern that enables this trajectory. Each generation
of coding agent adds more environmental grounding. The model gets smarter, yes—but the runtime
gets more capable too. AGI, if it arrives, will be a system, not a model.

11.4 Implications

1. Agent runtimes are as important as models. Equal attention should be paid to runtime
design: tool ecosystems, sandbox architectures, persistence mechanisms.

2. Template marketplaces will emerge. Agent templates will be traded like WordPress
themes—domain experts author, developers consume.

3. The “agent engineer” role shifts. Building agents becomes less about software engineer-
ing and more about domain expertise and prompt design.

4. Agent frameworks may become unnecessary. If coding agents can be redirected via
Markdown, SDK-based frameworks lose their value proposition for the majority of use
cases.

11.5 Limitations

* Physical-world tasks: Robotic manipulation, real-time sensory input—these require hard-
ware, not templates.

* Real-time constraints: Sub-second response requirements exceed current agent latencies.

* Regulatory compliance: Healthcare, finance may require more controlled environments.

» Template quality ceiling: Agent Redirection is bounded by template quality. But a bad
template costs hours to fix; a bad SDK integration costs weeks.

* Runtime dependency: If the underlying agent cannot perform an action, no template can
add it (though MCP partially addresses this).

12 Related Work

Agent frameworks. LangChain (LangChain, 2023), CrewAlI (CrewAl, 2024), AutoGen (Wu et al.,
2023), and MetaGPT (Hong et al., 2023) follow the Agent Construction paradigm. We propose
Agent Redirection as a complementary paradigm that eliminates most engineering effort by reusing
existing coding agent runtimes.

Code generation agents. Recent surveys (Various, 2025a,b) document the evolution from code
completion to autonomous software engineering. Our contribution is recognizing that this evolution
produced agents whose capabilities extend far beyond code—making them meta-agents.

Agent sandboxing. E2B (E2B, 2024), AgentBay (DaytimeAl, 2025), and Kubernetes-based agent
sandboxes (Agent Sandbox, 2025) address safe agent execution. SandAgent contributes a pluggable
sandbox architecture abstracting over multiple backends.

13

Benchmarks. GAIA (Mialon et al., 2023) evaluates general Al assistants; SWE-bench (Jimenez
et al., 2024) focuses on software engineering. We provide the first systematic cross-agent CLI
comparison on GAIA.

Multi-agent systems. Work on multi-agent architectures (Various, 2025¢) explores agent collabo-
ration. Our approach is orthogonal: a single meta-agent redirected to multiple domains, reducing
architectural complexity.

Agent-native development. The emerging agent-first paradigm (WebProNews, 2026) envisions
Al agents as primary actors in software systems. Our Meta-Agent Paradigm provides a theoretical
foundation: if coding agents are meta-agents, agent-native development is the natural consequence.

Industry convergence. GitHub Agent HQ (GitHub, 2026) and VS Code’s multi-agent support
(VS Code, 2026) treat coding agents as interchangeable runtimes—precisely the architecture our
thesis predicts.

13 Conclusion

Coding agents were built to write code. But the capabilities required to write software—executing
programs, managing files, searching the web, connecting to tools, reasoning about complex
systems—turn out to be the capabilities required for everything.

We formalized this as the Meta-Agent Paradigm: coding agents are meta-agents whose ca-
pability set subsumes virtually all domain-specific Al agents. We proposed Agent Redirec-
tion—specializing meta-agents through declarative Markdown templates rather than SDK-based
construction—and demonstrated ~300x reduction in development effort across four domains.

Our system, SandAgent, implements this paradigm with pluggable runtimes and sandboxes. On
GAIA, template-redirected agents achieve competitive performance. The industry convergence—
GitHub Agent HQ unifying Claude, Codex, and Copilot as interchangeable runtimes—provides
independent validation.

We proposed the AGI-Runtime Hypothesis: that general intelligence will emerge not from a single
model, but from the combination of capable models with agent runtimes that provide environmental
grounding. The Meta-Agent Paradigm is the architectural pattern enabling this trajectory.

Coding agents are all you need.
Don’t build agents. Redirect them.

Availability. SandAgent is open-source under Apache 2.0 at https://github.com/vikadata/
sandagent.

A Domain Coverage Details

Full capability mapping for domain-specific agents. Each cell indicates whether the capability is
natively available (Y) or available via MCP extension.

Detailed Domain Coverage

Data Analyst Agent:
Compute -> Run SQL, Python pandas, numpy
Storage -> Save datasets, intermediate results
Network -> Fetch external data sources
Extension -> PostgreSQL via MCP, S3 via MCP
Reasoning -> Statistical analysis, trend detection

Research Assistant Agent:

Compute -> Run scripts for data processing
Storage -> Save research notes, citations
Network -> Web search, academic paper retrieval

14

https://github.com/vikadata/sandagent
https://github.com/vikadata/sandagent

Extension -> Scholar API via MCP, Zotero via MCP
Reasoning -> Source evaluation, synthesis, fact-checking

SEQ Optimizer Agent:
Compute -> Run keyword analysis scripts
Storage -> Save audit reports, content drafts
Network -> Fetch competitor pages, SERP data
Extension -> Google Search Console via MCP
Reasoning -> Content scoring, optimization strategy

Content Creator Agent:

Compute -> Run formatting/templating scripts
Storage -> Save drafts, asset references
Network -> Research topics, fetch references

Extension -> CMS via MCP, social media APIs via MCP
Reasoning -> Tone analysis, audience targeting

Business Analyst Agent:

Compute -> Financial modeling, projections
Storage -> Save reports, spreadsheets
Network -> Market data, competitor intelligence

Extension -> Salesforce via MCP, BI tools via MCP
Reasoning -> SWOT analysis, market sizing

DevOps Engineer Agent:
Compute -> Run deployment scripts, health checks
Storage -> Save configs, logs, runbooks
Network -> Monitor endpoints, fetch metrics
Extension -> AWS CLI via MCP, Kubernetes via MCP
Reasoning -> Incident diagnosis, capacity planning

B Template Examples

B.1 Analyst Template (CLAUDE.md)

Data Analyst Agent

You are an expert data analyst specializing in:
- SQL query optimization

- Python data analysis (pandas, numpy)

- Data visualization (matplotlib, plotly)

Your Workflow

Understand the data structure first

Write clean, documented SQL/Python

Always validate results before presenting
Create clear visualizations with proper labels

S wWN - R

Output Requirements

- Always produce an artifact.json tracking your work
- Include both raw data and visualizations

- Provide confidence levels for statistical claims

B.2 Researcher Template (CLAUDE.md)

Research Assistant Agent

You are a thorough research assistant who:
- Searches multiple sources for comprehensive coverage

15

- Evaluates source credibility and recency
- Synthesizes findings into structured reports
- Always cites sources with URLs

Research Protocol

1. Clarify the research question

2. Search broadly, then narrow

3. Cross-reference claims across sources

4. Produce a structured artifact with findings

B.3 MCP Configuration (mcp.json)

{
"mcpServers": {
"postgres": {
"command": "mcp-server-postgres",
"args": ["postgresql://localhost/analytics_db"]
} 3
"filesystem": {
"command": "mcp-server-filesystem",
"args": ["/workspace/data"]
}
}
}

B.4 Skill Module (skills/sql/SKILL.md)

description: "SQL query optimization patterns.
Use when writing or reviewing SQL queries."

SQL Expert Skill

Query Optimization Patterns

- Always use indexes on WHERE clauses

- Prefer JOINs over subqueries for large datasets
- Use EXPLAIN ANALYZE to verify query plans

- Limit result sets with LIMIT for exploration

C GAIA Benchmark Details

C.1 Task Categories
GAIA tasks span five categories: file manipulation, code execution, web search, browser interaction,

and multi-step reasoning. All coding agents were evaluated with default configurations and no task-
specific tuning.

Table 8: GAIA Level 1 results by task category (validation set, accuracy %).

Agent Files Code Search Browser Reasoning
Codex CLI 78.3 81.2 65.4 70.1 72.8
Gemini CLI 552 487 52.1 453 53.6
SandAgent 48.1 523 38.7 352 429
Claude Code 44.5 47.8 332 30.8 41.5

16

Table 9: Codex CLI detailed results across all levels.

Level Tasks Correct Accuracy
Level 1 (easy) 53 39 73.58%
Level 2 (medium) 86 52 60.47%
Level 3 (hard) 26 15 57.69%

C.2 Cross-Level Performance
C.3 Observations

The consistent performance of all coding agents across non-coding task categories (search, browser,
reasoning) provides empirical support for the meta-agent thesis. These agents were not designed for
general-purpose assistance, yet they achieve meaningful accuracy on tasks far outside their intended
domain.

The performance gap between agents (Codex 73.58% vs. Claude Code 39.62% on Level 1) reflects
differences in underlying model capability and tool implementation quality—not fundamental limi-
tations of the meta-agent paradigm itself.

D Package Architecture

SandAgent is a TypeScript monorepo with strict dependency boundaries:

sandagent/

+-- apps/

| +-- sandagent-example/
| +-- manager-cli/

| +-- runner-cli/

+-- packages/

| +-- manager/

| +-- ai-provider/

| +-- runner-claude/

| +-- sandbox-local/

| +-- sandbox-e2b/

| +-- sandbox-sandock/
| +-- sandbox-daytona/
| +-- sdk/
|
+—_

+-- benchmark/
templates/

+-— default/
+-— coder/

+-- analyst/
+-- researcher/
+-- seo-agent/
+-- (8 more...)

Next.js web app with AI chat UI
sandagent-manager command
sandagent command (choose runner)

Core interfaces (zero deps)
AT SDK v3 provider

Claude Agent SDK runtime
Local filesystem adapter
E2B cloud adapter

Docker adapter

Daytona adapter

Unified SDK + React hooks
GAIA benchmark harness

General-purpose

Software development
Data analysis

Web research

SEQO optimization
Domain-specific templates

Dependency Flow (no circular dependencies)

Applications:
ai-provider --> manager + runner—* + sandbox—x*
manager-cli --> manager + runner—* + sandbox-—x*
runner-cli --> runner—-* ONLY (no manager, no sandbox)
Core:
manager --> nothing (interface-only)

17

Runners (used directly OR via manager):
runner-claude --> Qanthropic-ai/claude-agent-sdk
runner-codex --> (planned)
runner-copilot --> (planned)

Sandboxes (used via manager only):
sandbox-local --> node.js stdlib
sandbox-e2b --> e2b SDK
sandbox-sandock --> sandock SDK
sandbox-daytona --> @daytonaio/sdk

References

M. Andreessen. Why software is eating the world. The Wall Street Journal, 2011.

Anthropic. Claude Code: An agentic coding tool. https://docs.anthropic.com/en/docs/
claude-code, 2025.

Anthropic. Model Context Protocol. https://modelcontextprotocol.io, 2024.
OpenAl. Codex CLI: Open-source coding agent. https://github.com/openai/codex, 2025.
GitHub. GitHub Copilot agent mode. https://github.com/features/copilot, 2025.

GitHub. Agent HQ: Claude and Codex now available in public preview. https://github.blog/
changelog/2026-02-04-claude-and-codex-in-agent-hq/, 2026.

Visual Studio Code. Your home for multi-agent development. https://code.visualstudio.
com/blogs/2026/02/05/multi-agent-development, 2026.

G. Mialon, C. Fourrier, C. Swift, T. Wolf, Y. LeCun, and T. Scialom. GAIA: A benchmark for
general Al assistants. arXiv preprint arXiv:2311.12983, 2023.

C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. Narasimhan. SWE-bench: Can
language models resolve real-world GitHub issues? arXiv preprint arXiv:2310.06770, 2024.

Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang, S. Zhang, J. Liu, et al.
AutoGen: Enabling next-gen LLM applications via multi-agent conversation. arXiv preprint
arXiv:2308.08155, 2023.

S. Hong, M. Zhuge, J. Chen, X. Zheng, Y. Cheng, C. Zhang, J. Wang, Z. Wang, S. K. S. Yau, Z. Lin,
et al. MetaGPT: Meta programming for a multi-agent collaborative framework. arXiv preprint
arXiv:2308.00352, 2023.

LangChain. Building applications with LLMs. https://www.langchain.com, 2023.
CrewAl. Framework for orchestrating role-playing Al agents. https://www.crewai.com, 2024.
E2B. Cloud sandboxes for Al agents. https://e2b.dev, 2024.

DaytimeAl. AgentBay: A hybrid interaction sandbox for seamless human-Al intervention. arXiv
preprint arXiv:2512.04367, 2025.

Agent Sandbox Contributors. Agent Sandbox: A Kubernetes primitive for Al agent execution.
https://github.com/agent-sandbox/agent-sandbox, 2025.

A survey on code generation with LLM-based agents. arXiv preprint arXiv:2508.00083, 2025.

Al agentic programming: A survey of techniques, challenges, and opportunities. arXiv preprint
arXiv:2508.11126, 2025.

A communication-centric survey of LLM-based multi-agent systems. arXiv preprint
arXiv:2502.14321, 2025.

18

https://docs.anthropic.com/en/docs/claude-code
https://docs.anthropic.com/en/docs/claude-code
https://modelcontextprotocol.io
https://github.com/openai/codex
https://github.com/features/copilot
https://github.blog/changelog/2026-02-04-claude-and-codex-in-agent-hq/
https://github.blog/changelog/2026-02-04-claude-and-codex-in-agent-hq/
https://code.visualstudio.com/blogs/2026/02/05/multi-agent-development
https://code.visualstudio.com/blogs/2026/02/05/multi-agent-development
https://www.langchain.com
https://www.crewai.com
https://e2b.dev
https://github.com/agent-sandbox/agent-sandbox

How AI agents are rewriting the rules of software development. https://www.webpronews.com/
the-agent-native-revolution/, 2026.

Sandock. Sandboxes in Docker for Al agents. https://sandock.ai, 2025.

Sierra Research. 7-bench: A benchmark for tool-agent-user interaction in real-world domains.
NeurlPS, 2024.

S. Zhou, F. F. Xu, H. Zhu, X. Zhou, R. Lo, A. Sridhar, X. Cheng, T. Bisk, D. Fried, U. Alon, and
G. Neubig. WebArena: A realistic web environment for building autonomous agents. /CLR, 2024.

T. Xie, D. Zhang, J. Chen, X. Li, S. Zhao, R. Cao, T. J. Hua, Z. Cheng, D. Shin, F. Lei, Y. Liu,
and Y. Tao. OSWorld: Benchmarking multimodal agents for open-ended tasks in real computer
environments. NeurIPS, 2024.

X. Liu, H. Yu, H. Zhang, Y. Xu, X. Lei, H. Lai, Y. Gu, H. Ding, K. Men, K. Yang, et al. AgentBench:
Evaluating LLMs as agents. ICLR, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and 1. Polo-
sukhin. Attention is all you need. Advances in Neural Information Processing Systems, 30, 2017.

OpenAl. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

19

https://www.webpronews.com/the-agent-native-revolution/
https://www.webpronews.com/the-agent-native-revolution/
https://sandock.ai

	Coding Agents Are Eating the World
	The Agent Construction Tax
	The Framework Explosion

	Three Generations of Coding Agents
	The MCP Multiplier

	The Coding Agent Arsenal: Built-In Superpowers
	Capability Survey
	Agent Profiles
	The Key Insight

	The Meta-Agent Thesis
	Definitions
	Why Software Engineering Produces Meta-Agents

	Capability Taxonomy
	Domain Coverage
	What Differentiates Domain Agents?

	Agent Redirection
	The Redirection Stack
	Agent Redirection vs. Agent Construction
	Template Portability

	SandAgent: System Design
	Architecture
	Interface-Driven Design
	Pluggable Sandbox Backends
	Why POSIX Compatibility Matters
	Local Execution Mode

	Passthrough Streaming
	The Problem with Translation Layers
	The Contract
	Why This Matters

	Experiments
	GAIA Benchmark
	Why Coding Agents Already Represent the Intelligence Ceiling

	Broader Benchmark Landscape
	Domain Specialization
	Template Anatomy

	The AGI-Runtime Hypothesis
	AGI is Not a Model
	What Coding Agents Add to Models
	The Trajectory
	Implications
	Limitations

	Related Work
	Conclusion
	Domain Coverage Details
	Template Examples
	Analyst Template (CLAUDE.md)
	Researcher Template (CLAUDE.md)
	MCP Configuration (mcp.json)
	Skill Module (skills/sql/SKILL.md)

	GAIA Benchmark Details
	Task Categories
	Cross-Level Performance
	Observations

	Package Architecture

